Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривые титрования смеси сильной и слабой кислот или смеси сильного н слабого оснований

Рис. 148. Кривые кондуктометрического титрования. а—сильная кислота—сильное основание б—слабая кислота—сильное основание и—очень слабая кислота-сильное основание г—слабая кислота—слабое осноиание д—смесь сильной и слабой кислот—сильное основание —соль слабой кислоты—сшьное основание ж—титрование с осаждением. Рис. 148. <a href="/info/285060">Кривые кондуктометрического титрования</a>. а—<a href="/info/609740">сильная кислота—сильное основание</a> б—<a href="/info/609742">слабая кислота—сильное основание</a> и—очень <a href="/info/609742">слабая кислота-сильное основание</a> г—<a href="/info/5209">слабая кислота—слабое</a> осноиание д—<a href="/info/264326">смесь сильной</a> и <a href="/info/609742">слабой кислот—сильное основание</a> —<a href="/info/263186">соль слабой кислоты</a>—сшьное основание ж—титрование с осаждением.

    Вполне обычно, что два или несколько видов кислых или основных частиц присутствуют в одном и том же растворе. Рассмотрим смесь двух кислот, которую титруют сильным основанием. Если обе кислоты сильные, как, например, смесь хлористоводородной и хлорной кислот, кривая титрования будет иметь вид как на рис. 4-2, и невозможно будет определить концентрации индивидуальных кислот. Рассмотрим теперь смесь двух слабых кислот с близкими константами диссоциации. Здесь также две слабые кислоты будут проявлять себя как совершенно похожие источники ионов водорода. Поэтому результирующая кривая титрования будет иметь общие характерные черты кривой, представленной на рис. 4-4, и не представляется возможным анализировать содержание индивидуальных компонентов такой смеси. [c.146]

    Титрование смеси кислот или смеси оснований подчиняется тем же основным правилам. Если титруем сильным основанием смесь сильной кислоты и слабой кислоты с достаточно малым значением константы диссоциации, то получаем два отдельных, четко выраженных скачка на кривой, почти не зависящих один от другого. В таких случаях мы, однако, откладываем на оси абсцисс не общую степень оттитрованности обеих кислот, а объем добавленного титранта. Теоретическое условие правильности значения конечной точки титрования сильной кислоты сводится к тому, чтобы pH раствора слабой кислоты [c.190]

    Однако, если смесь содержит сильную и слабую кислоты или две слабых кислоты разной силы, то, зная относительные силы этих двух кислот, можно определить до какой степени можно полностью оттитровать более сильную кислоту перед тем, как вторая кислота начнет реагировать с титрантом. Если разница в силе кислот довольно большая, на кривой титрования будут проявляться две отчетливых точки эквивалентности для каждого из двух последующих титрований. Теперь рассмотрим поведение систем, содержащих более чем одну кислую или основную частицу для того, чтобы узнать, каковы должны быть разницы в силах кислот или оснований, чтобы провести последовательное титрование индивидуальных компонентов в смеси. [c.146]

    Специальные опыты были проведены с целью проверить критерии кондуктометрического анализа пятикомпонентных смесей основного характера (см. приложение 18, схемы 3, 4). Кривые титрования двух пятикомпонентных смесей показаны на рис. 90 (кривые 6, 7), Первая смесь содержит три основания и две соли, образованные катионами сильных оснований и анионами слабых кислот. Компоненты взаимодействуют в указанной последовательности. Поскольку слабые основания взаимодействуют между солями, все изломы кривой четкие. Несколько закруглен первый излом кривой, так как р/Сь изобутиламина, равная 3,57, ниже установленного критерия. Однако графический метод позволяет находить первую точку эквивалентности. [c.177]


    При титровании слабой кислоты сильным основанием (рис. 155) точка эквивалентности отвечает уже не нейтральной среде, а сме щается в сторону более высоких pH, тем более высоких, чем слабее кислота. Потенциометрическое титрование и в этом случае дает возможность достаточно четко определить положение эквивалентной точки. Титрование слабой кислоты слабым основанием (не показано) дает значительно более пологий ход кривой, и точка эквивалентности выявляется недостаточно резко. [c.443]

    Кондуктометрическим методом можно проводить титрование слабой кислоты слабым основанием или наоборот. Проводить этот процесс другими методами весьма затруднительно. На рис. 4-2 представлены кривые процесса титрования щавелевой кислоты раствором аммиака. Щавелевая кислота, подобно всем двухосновным кислотам, реагирует как эквимолярная смесь умеренно сильной и слабой кислот. [c.64]

    Смеси электролитов основного характера могут содержать цвиттер-ионы, сильное основание, слабое основание и соли слабых кислот. Например, критерии анализа выдерживаются в смесях глицина, а-аланина или валина с NaOH, хроматом натрия и анилином (см. приложение 26). Кривые титрования раствором НС1 указанных смесей показаны на рис. 96. Щелочь в смесях взаимодействует с аминокислотами и переводит их в анионы — NH2R OO-. При взаимодействии с НС1 сначала нейтрализуется избыток NaOH, затем нейтрализуются аминогруппы в анионах аминокислот, что приводит к образованию цвиттер-ионов. Затем с НС1 взаимодействует хромат натрия (образование кислой соли). Если в смесь кроме этого входит анилин, он нейтрализуется последним. Кривые титрования имеют соответственно три или четыре излома. Изменение электропроводности раствора от избытка титранта носит нелинейный характер, что объясняется, как рассмотрено ранее, влиянием реакции вытеснения карбоксильных групп в цвиттер-ионах. [c.183]

    Так как подвижности гидроксильных ионов сильно отличаются от подвижностей водородных ионов, кривые титрования смесей оснований и солей слабых кислот отличаются от кривых титрования смесей кислот и солей слабых оснований. Если в смесь входит достаточно сильное основание, которое нейтрализуется в первую очередь, понижение электропроводности раствора до первой точки эквивалентности менее резко выражено, чем при нейтрализации в смесях кислот такой же силы. Избыток титранта (сильной кислоты) вызывает более сильное повышение электропроводности раствора после второй точки эквивалентности, чем избыток основания при титровании кислых смесей. Изменение электропроводности раствора при взаимодействии солей зависит от сравнительной подвижности заменяющих друг друга ионов и может полностью совпадать при титровании смесей кислотного и основного характера, если имеет место такое же соотношение в подвижностях ионов. [c.121]

    Построение кривой титрования слабого основания сильной кислотой производится аналогично тому, как это было сделано в вышеразобранном примере титрования слабой кислоты сильным основанием. Перед началом титрования pH раствора определяется с помощью уравнения (2) или (2а) (см. стр. 15). На участке до точки эквивалентности в растворе находится буферная смесь — слабое основание и соль слабого основания и сильной кислоты pH раствора на этом участке следует рассчитать, пользуясь уравнением (11) или (12) (см. стр. 21). В точке эквивалентности в растворе будет находиться соль слабого основания и сильной кислоты и pH раствора будет зависеть от гидролиза этой соли здесь следует воспользоваться уравнением (9) или (10) (см. стр. 20). За точкой эквивалентности pH раствора будет определяться только за счет избытка сильной кислоты, так как гидролиз соли в этих условиях будет подавлен. [c.134]

    Насколько реакции обратимы можно видеть из рис. 16 и 17, где показаны кривые изменения концентраций ионов и кривые титрования сильным основанием смесей соли слабого основания (рД ь = 8) с кислотами, имеющими рКа = А и 8. В первом случае (р/Са + рДь) = 12, а во втором 16. Как видно из рис. 16, если смесь имеет (р/СаЧ-+ рА ь) —12, сначала нейтрализуется слабая кислота [c.57]

    При титровании слабой кислоты сильным основанием или слабого основания сильной кислотой получают кривую титрования, приведенную на рис. 82 (кривая с). Вследствие меньшей диссоциации слабой кислоты или слабого основания электропроводность вначале минимальна, но по мере образования ионизированной соли она возрастает. Можно одновременно титровать смесь сильной и слабой кислот (или сильного и слабого оснований) сильным основанием (соответственно сильной кислотой) (рис. 82, кривая Ь). Участок АВ этой кривой соответствует нейтрализации сильной кислоты (соответственно сильного основания), участок ВС, имеющий меньший наклон, соответствует нейтрализации слабой кислоты (или слабого основания), участок D — избытку основания (или кислоты). [c.216]


    Уравнения кривых титрования. В уравнении электронейтральности раствора концентрации всех ионов (кроме водородных и гидроксильных) заменяют на известные величины — концентрации электролитов или на значения концентраций анионов слабых кислот и катионов слабых оснований, выраженные соответствующими формулами. Кроме того, если титруют электролит или смесь электролитов, проявляющих кислотный характер, концентрацию гидроксильных ионов выражают через концентрацию водородных ионов, исходя из произведения активностей ионов воды. В случае титрования электролитов основного характера, наоборот, концентрацию водородных ионов выражают через концентрацию гидроксильных ионов. После этой замены проводят математическое преобразование и получают линейные уравнения той или иной степени, содержащие две неизвестные величины — концентрацию водородных (или гидроксильных) ионов и средний коэффициент активности одновалентных ионов. Например, уравнение кривой титрования слабых одноосновных кислот растворами сильных оснований представляется в следующем виде  [c.74]

    Титровали хлористоводородной кислотой четырехкомпонентную смесь, содержащую три основания и одну соль, с целью проверки критериев приложения 17 (схемы 2). Компоненты смеси взаимодействуют в последовательности гидроокись натрия, моноэтаноламин, 5,5-ди-этилбарбитурат натрия, анилин. Как видно из рис. 90 (кривая /), четыре излома кривой титрования этой смеси выражены весьма резко. Переход от нейтрализации гидроокиси натрия к нейтрализации моноэтаноламина фиксируется четким изломом. Дифференцированное титрование двух слабых оснований и соли, которые взаимодействуют между основаниями, обусловлено теоретическими предпосылками, так как суммы рКъ оснований и р/(а диэтилбарбитуровой кислоты равны 11,23 и 16,85. При нейтрализации слабых оснований электропроводность довольно сильно увеличивается, а при взаимодействии соли увеличение электропроводности незначительное, что и способствует получению резких изломов кривой. [c.175]


Смотреть страницы где упоминается термин Кривые титрования смеси сильной и слабой кислот или смеси сильного н слабого оснований: [c.501]    [c.266]    [c.473]    [c.78]    [c.95]    [c.599]    [c.113]    [c.350]   
Смотреть главы в:

Основы аналитической химии Часть 1 -> Кривые титрования смеси сильной и слабой кислот или смеси сильного н слабого оснований




ПОИСК





Смотрите так же термины и статьи:

Кислота слабые

Кислота смеси

Кислоты сильными основаниям

Кислоты сильных сильными основаниям

Кислоты слабых сильными основаниям

Кислоты слабых слабыми основаниям

Кислоты смеси, титрование

Кривые титрования

Кривые титрования слабых кислот

Кривые титрования смеси кислот

Основание сильные

Основания и кислоты

Основания сильные, титрование

Основания слабые

Основания слабые, титрование

Основания смеси, титрование

Слабов

Смеси кислот и оснований

Смеси кислот и смеси оснований

Титрование кислот и оснований слабых кислот и оснований

Титрование кислот оснований

Титрование кислотами

Титрование основаниями

Титрование сильных кислот и оснований

Титрование сильных кислот сильными основаниями

Титрование слабых кислот

Титрование слабых кислот и оснований

Титрование слабых кислот сильными основаниями

Титрование слабых кислот слабыми основаниями

Титрование смесей

Титрование смесей оснований сильными кислотами



© 2025 chem21.info Реклама на сайте