Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность растворов слабых кислот и оснований при

    Электропроводность растворов слабых кислот и оснований при 25° С [c.119]

    Титрование слабой кислоты сильным основанием и слабого основания сильной кислотой. В начальный момент титрования слабой кислоты сильным основанием электропроводность раствора понижается вследствие образования соли сильного основания и слабой кислоты, которая, имея общий анион с кислотой, подавляет ее диссоциацию. По мере добавления титранта электропроводность раствора медленно увеличивается вследствие повышения концентрации анионов кислоты и катионов основания, а после точки эквивалентности быстро растет за счет появления избытка щелочи. Для кислот с р. > 9 заметно влияние гидролиза образующейся соли, которое выражается в закруглении кондуктометрических кривых вблизи точки эквивалентности. Используя графический метод определения точки эквивалентности, с помощью кондуктометрического титрования можно определять 0,1 моль/л растворы слабых кислот с р. <10. [c.160]


    При титровании НС1 электропроводность раствора до точки эквивалентности линейно понижается, так как нейтрализуются высокоподвижные ионы водорода (рис. 16, кривая J). Нейтрализация борной кислоты сопровождается повышением проводимости раствора до точки эквивалентности (рис. 16, кривая 5), что объясняется образованием хорошо диссоциирующей соли. Вблизи точки эквивалентности кривая титрования борной кислоты в более разбавленных растворах имеет плавный изгиб вследствие гидролиза метабората натрня. Нейтрализация слабой полиметакриловой кислоты также сопровождается повышением электропроводности раствора, однако кондуктометрическая кривая до точки эквивалентности слегка изогнута, что связано с изменением степени диссоциации кислоты в процессе нейтрализации (рис. 16, кривая 4]. Избыток основания при титровании всех перечисленных [c.107]

    Титрование оснований. Возможности кондуктометрического определения оснований различной силы и характер изменения электропроводности растворов при их титровании в обш,ем аналогичны рассмотренным для кислот. Отличие заключается только в том, что при нейтрализации сильных оснований электропроводность понижается менее резко, чем при нейтрализации сильных кислот, так как подвижность ОН пиже подвижности Н+, и, наоборот, избыток титранта вызывает более резкое повышение электропроводности. Следует также заметить, что плавный ход кривых вблизи точек эквивалентности, наблюдаемый при титровании слабых оснований (гидролиз образующихся солей), более заметен по сравнению с наблюдаемым для кислот такой же силы. Это объясняется тем, что при титровании- кислот в результате гидролиза в растворе " образуются гидроксильные ионы, а при титровании оснований — более подвижные водородные ионы. [c.82]

    Очень слабые кислоты практически не взаимодействуют со слабыми основаниями, что может быть использовано при определении некоторых многоосновных кислот. Например, если титровать фосфорную кислоту раствором аммиака, то кондуктометрическая кривая имеет изломы, соответствующие первой и второй точкам эквивалентности. При титровании до первой точки электропроводность понижается, а до второй — повышается. После второй точки эквивалентности электропроводность остается постоянной, так как аммиак не взаимодействует с НРО -ионами, кислотные свойства которых выражены очень слабо. [c.81]

    Титрование солей. При титровании соли слабой кислоты сильной кислотой вытесняется слабая кислота, а при титровании соли слабого основания сильным основанием вытесняется слабое основание. Соли, образованные слабыми кислотами и слабыми основаниями, можно титровать как сильными кислотами, так и сильными основаниями. На ход кривых титрования существенное влияние оказывает степень гидролиза соли чем она выше, тем больше электропроводность раствора. Если соль образована очень слабым основанием (кислотой) и подвергается в растворе полному гидролизу, то кривая титрования имеет V-образную форму, характерную для кривых титрования сильных кислот и оснований. [c.162]


    Цветные индикаторы очень удобны и в большинстве случаев дают при титровании вполне удовлетворительные результаты. Однако иногда применение их оказывается затруднительным или вовсе невозможным. Это относится, например, к титрованию мутных, окрашенных или очень разбавленных растворов слабых кислот и оснований. Кроме того, для некоторых реакций еще не найдены подходящие цветные индикаторы. Поэтому для нахождения точки эквивалентности при объемных определениях часто используют физико-химические методы. В ходе титрования наблюдают не изменение окраски индикатора, а изменение некоторых электрохимических показателей титруемого раствора электропроводности (кондуктометрическое титрование), окислительно-восстановительного потенциала (потенциометрическое титрование), силы тока (амперометрическое титрование) и т. д. Преимущество определения точки эквивалентности с помощью физико-химических методов состоит в том, что вместо визуального наблюдения за изменением окраски индикатора в этих случаях используют специальные приборы, дающие объективные показания. [c.333]

    Э. д. с., температурный коэффициент Электродный потенциал Электрон, масса покоя Электропроводность молекулярная растворов слабых кислот и оснований 43 температурный коэффициент 42 удельная воды 39 эквивалентная ионов при бесконечном разведении 42 растворов электролитов 40 Энергия [c.155]

    Таким образом, приближенная функция диссоциации к может быть получена из измерения эквивалентной электропроводности раствора слабой кислоты или слабого основания с концентрацией с и из известного значения электропроводности при бесконечном разведении. Степень диссоциации достаточно [c.421]

    Влияние концентрации раствора слабого электролита на его степень диссоциации. Приготовьте четыре раствора уксусной кислоты разной концентрации по 100 мл каждой первый раствор—100 %-ная (ледяная) уксусная кислота (Будьте осторожны Во время работы с ледяной уксусной кислотой при попадании ев на кожу рук могут появиться ожоги в виде волдырей). Остальные три раствора приготовьте, разбавляя уксусную кислоту любой концентрации дистиллированной водой так, чтобы объемные соотношения уксусной кислоты и воды равнялись 1 10, 1 50 и 1 250. Объем безводной уксусной кислоты можно уменьшить, если вместимость сосуда для измерения электропроводности значительно меньше 100 мл. Определите по прибору электропроводность безводной уксусной кислоты и ее растворов и на основании показаний амперметра сделайте вывод об увеличении степени диссоциации кислоты после разбавления. Растворы кислот сохраните для следующего опыта. [c.89]

    Титрование слабой кислоты слабым основанием. В этом случае изменение электропроводности раствора до точки эквивалентности связано только с повышением концентрации анионов кислоты и катионов основания. Если реакция протекает количественно, то концентрации этих ионов равны между собой и линейно возрастают. После точки эквивалентности электропроводность раствора остается практически постоянной. Ограничения связаны с гидролизом образующихся солей. В результате гидролиза в растворе снижаются равновесные концентрации анионов кислоты и катионов основания. При этом кривые титрования закругляются вблизи точки эквивалентности. Кондуктометрическое определение [c.161]

    Э. д. с.. температурный коэффициент Электродный потенциал Электрон, масса покоя Электропроводность растворов слабых кислот и оснований температурный коэффициент [c.178]

    Электропроводность. Закономерности изменения указанной характеристики при воздействии внешних и внутренних факторов различны. Так, например, с увеличением концентрации электролитов электропроводность имеет в большинстве случаев экстремум. Убедительным примером могут служить зависимости, представленные на рис. 1. Их сравнительная оценка также позволяет констатировать, что растворы сильных кислот имеют наибольшую удельную электропроводность. Им несколько уступают растворы сильных оснований. Растворы хорошо диссоциирующих солей имеют в 2—3 раза меньшую электропроводность. Растворы слабых кислот и оснований, а также плохо диссоциирующих солей имеют наименьшую электропроводность. [c.11]

    Кислота средней силы — сильное основание. Кривые титрования имеют пологий минимум, не имеющий аналитического значения (рис. 106, а, кривая А СВ). Например, кривая титрования 0,1 л. раствора дихлоруксусной кислоты (р/(а=1,25) сильным основанием имеет слабый изгиб вблизи точки эквивалентности. В первый момент титрования электропроводность уменьшается вследствие образования соли сильного основания и слабой кислоты, которая хорошо диссоциирована, и, имея общий ион с кислотой, подавляет ее диссоциацию. По мере прибавления щелочи электропроводность соли увеличивается и превышает электропроводность ислоты. После точки эквивалентности электропроводность раствора быстро рас-тет за счет накопления избытка щелочи. [c.156]


    Определение удельной и эквивалентной электропроводности растворов слабой кислоты или слабого основания. [c.113]

    Если слабая кислота титруется сильным основанием, то график кондуктометрического титрования будет иным. В растворе слабой кислоты Сн- мало, и электропроводность такого раствора невелика. Первые порции добавленного сильного основания могут вызвать некоторое уменьшение электропроводности (однако не во всех случаях). В дальнейшем добавка основания вызывает рост электропроводности, так как постепенно слабая кислота заменяется солью этой кислоты и сильного основания. Такие соли относятся к сильным электролитам. Следовательно, по мере добавки основания растут число свободных ионов и электропроводность. Например, если бы мы производили титрование слабой уксусной кислоты сильным основанием (едким натром) [c.177]

    Б течение ряда лет для исследования равновесий в сильнокислых растворах с участием слабых органических оснований использована т. н. дифференциально- кондуктометрическая методика. Последняя сводится к измерению влияния маленьких добавок основания на удельную электропроводность раствора сильной кислоты, выражаемого через величину [c.541]

    Титрование смеси кислот и двухосновных кислот. Кривая изменения электропроводности при титровании смеси сильной и слабой кислот сильным основанием имеет впд совмещенных кривых титрования сильной кислоты и слабой кислоты (рис. 106, б). Первой нейтрализуется сильная кислота. Вследствие присутствия в растворе сильной кислоты диссоциация слабой кислоты подавлена и вклад ее в общую электропроводность раствора незначителен. В первой точке эквивалентности в растворе будет находиться слабая кислота и соль сильной кислоты, концентрация которой при дальнейшем титровании не изменяется. Поэтому после первой точки эквивалентности будет происходить титрование слабой кислоты. Количество щелочи, израсходованное на титрование сильной кислоты, соответствует отрезку OB, а израсходованное на титрование слабой кислоты — отрезку В С.  [c.157]

Рис. 3.4. Зависимость электропроводности раствора сильной ) и слабой (2) кислоты от количества добавленного основания. Рис. 3.4. <a href="/info/1308457">Зависимость электропроводности</a> раствора <a href="/info/356086">сильной</a> ) и <a href="/info/470360">слабой</a> (2) кислоты от количества добавленного основания.
    Если титруют слабые или средней силы кислоты слабыми основаниями, характер изменения электропроводности раствора до точки эквивалентности такой же, как и при титровании сильными основаниями, поскольку продуктами реакции и в этом случае являются хорошо диссоциирующие соли  [c.81]

    Метод кондуктометрического титрования основан на том, что ионы, содержащиеся в прибавляемом растворе, соединяются с теми или другими ионами из находящихся в титруемом растворе, образуя молекулы слабо диссоциирующего соединения (например, H+-I-OH HjO) или малорастворимое вещество (например, Ag + l —> Ag l). В получаемом же растворе взамен удаленных ионов будут содержаться другие ионы в эквивалентном количестве. При различии в подвижности ионов такая замена приводит к изменению электропроводности раствора. Так, при титровании раствора гидроокиси натрия раствором соляной кислоты взамен ионов ОН" в раствор будут поступать ионы h, обладающие меньшей подвижностью, что вызовет уменьшение электропроводности. Например, эквивалентная электропроводность сильно разбавленного раствора гидроокиси натрия, равная сумме подвижностей ионов Na и ОН", составляет при 18° С  [c.412]

    В 1888 г. Оствальд нашел закономерность, связывающую степень диссоциации электролита с его концентрацией. Исследуя электропроводность кислот при различных разбавлениях, Оствальд установил, что электропроводность кислот увеличивается с разбавлением, причем величина электропроводности асимптотически приближается к некоторой предельной величине. Им было найдено, что для растворов слабых кислот (янтарная и др.) и оснований увеличение молекулярной электропроводности с разбавлением гораздо заметнее, чем для кислот сильных, например серной и др. [c.284]

    Рассмотренные типы кондуктометрических кривых характерны также для титрования сильными кислотами солей, образованных катионами сильных оснований и анионами слабых кислот. Отличие заключается только в том, что понижение электропроводности в начале титрования, вызванное гидролизом, менее резко выражено, так как подвижность гидроксильных ионов, образующихся в растворе при гидролизе, значительно ниже подвижности ионов водорода. [c.85]

    Опыт 4. Изменение электропроводности при нейтрализации слабого основания слабой кислотой. Испытайте электропроводность 25%-ного раствора аммиака (см. опыт 2). Слейте раствор аммиака в стакан и прибавляйте к нему понемногу (осторожно ) концентрированную уксусную кислоту. Дайте раствору охладиться и снова испытайте его электропроводность. Чем объяснить большую электропроводность раствора  [c.119]

    Совсем недавно Фишер и Барн (1970) измерили температурную зависимость /Сн.о в широком интервале температур. Их метод основан на измерении электропроводности водных растворов соли (ВА) слабой кислоты (НА) и слабого основания (БОН) в смешанном растворе соли и кислоты (или основания). [c.155]

    Таким образом, каждый амфипротный растворитель приме-JiHM только для кислоты или основания вполне определенной рилы. В противном случае происходит эффект нивелирования или сольволиз. Чем меньше константа диссоциации растворителя, теМ большее число соединений можно в нем определить. С этой точки зрения лучшими растворителями для кислотноосновного титрования должны быть инертные апротонные недиссоциированные растворители первой группы. Однако эти растворители обычно очень слабо полярны, поэтому растворимость и диссоциация солей в них часто затруднена. Это приводит к незначительной электропроводности растворов и затрудняет электрометрическую индикацию точки эквивалентности. [c.342]

    На рис. 16 показана кривая изменения электропроводности при кондуктометрическом титровании слабой кислоты сильными основаниями. В начале электропроводность раствора растет вследствие замещения слабодиссоциированной кислоты ее сильнодиссоциированной солью. После эквивалентной точки электропроводность раствора возрастет еще больше, поскольку в растворе появляется избыток гидроксила, обладающий большой подвижностью. При титровании смеси растворов слабой и сильной кислот (рис. 17) в первую очередь в реакцию со щелочью вступает сильная кислота и только после того, как она будет полностью нейтрализована, начнет реагировать со щелочью слабая кислота. Эквивалентные точки четко видны на кривой титрования. 24 [c.24]

    Титрование смеси кислот и двухосновных кислот. Кривые изменения электропроводности при титровании смеси сильной и слабой кислот сильным основанием имеют вид совмещенных кривых титрования сильной и слабой кислоты (рис. 5.6). Первой титруется сильная кислота. Вследствие присутствия в растворе сильной кислоты диссоциация слабой кислоты подавлена и ее вклад в [c.161]

    Не менее выразительно неводное титрование и смеси оснований. На рис. 5 изображена кривая кондуктометрического титрования, заключающегося в измерении электропроводности растворов, четырехкомпонентной смеси диэтиламин + п-хлоранилин + дифенил-амин + ацетамид. Титровался в данном случае, разумеется, не водный раствор. В воде провести титрование подобной смеси было бы делом еоверщенно безнадежным, так как все ее компоненты в этом растворителе — очень слабые основания. В уксусной же кислоте сила этих оснований существенно возрастает по сравнению с водой. Для мочевины, например, этот рост составляет 7 ( ) порядков. Низкая же ДП уксусной кислоты обеспечивает дифференцирование силы оснований, позволяющее уверенно определить содержание каждого из них в смеси. [c.64]

    Так как коррозионные процессы в большинстве случаев протекают по электрохи.мическо.му механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно заряженных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также расплавы этих веществ. Электролита.ми могут быть и некоторые неводные растворы. Наряду с сильными электролитами, практически по шостью диссоциирующи.ми в растворе на ан1юны и катионы, некоторые вещества (например, органические кислоты) лишь частично распадаются на ионы, поэтому их принято называть слабыми электролитами . [c.17]

    Напротив, при титровании слабой кислоты слабым основанием, электропроводность исходного раствора мала из-за слабой диссоциации. Соль, образующаяся в результате титрования, диссоциирует полностью, что приводит к повьппению электропроводности. Однако при достижении точки эквивалентности концентрация сильного электролита остается постоянной, а увеличивается только концентрация слабого основания. [c.379]

    Слабые кислоты. При титровании умеренно слабой кислоты, например уксусной, сильным основанием, например гидратом окиси натрия, получается кривая титрования I, изображенная на рис. 25. Исходный раствор слабой кислоты имеет малую электропроводность, и прибавление щелочи может вызвать вначале ее дальнейшее понижение, несмотря на образование хорошо проводящей соли, например уксуснокислого натрия, о объясняется тем, что общий анион, т. е. ион ацетата, под авляет диссоциацию уксусной кислоты. Однако по мере дальнейшего прибавления щелочи электропроводность сильно диссоциированной соли скоро превосходит электропроводность слабой кислоты, которую она замещает, и удельная электропроводность раствора начинает возрастать. После достижения эквивалентной точки электроп роводность возрастает еще быстрее благодаря образованию избытка свободной щелочи в этой области кривая титрования параллельна соответствующей части кривой, изображенной на рис. 24. [c.116]

    Если в качестве критерия ирименягь электропроводность водных растворов, сильными электролитами оказываются почти все соли, щелочи и сильные кислоты. Слабые кислоты и основания, а также некоторые соли [хлорид ртути (II), бромид кадмия и др.] представляют собой слабые электролиты. При изменении раство- [c.27]

    При титровании сильного основания слабой кислотой электропроводность после достижения минимума возрастает очень слабо, так как при избытке малодиссоциированной кислоты в растворе появляется небольшое количество свободных ионов, которое не может сильно увеличить электропроводность. Поэтому eefBb ВС располагается в этом случае почти горизонтально. Подобные же соотношения имеют место при титровании сильной кислоты слабым основанием. [c.413]

    Титрование оснований. Характер изменения электропроводпо-сти растворов при титровании оснований кислотами тот же, что и при титровании кислот основаниями. Различие заключается в том, что при нейтрализации сильных оснований электропроводность понижается менее резко, по сравнению с нейтрализацией сильных кислот, так как подвижность ионов ОН меньше подвижности ионов Н+, вследствие этого избыток титранта вызывает более резкое увеличение электропроводности. Плавный ход кривых вблизи точки эквивалентности, наблюдаемый при титровании слабых оснований. и объясняющийся гидролизом, более ярко выражен, чем при титровании кислот одинаковой силы. Это объясняется тем, что при титровании кислот в результате гидролиза в растворе образуются ионы ОН , а при титровании оснований образуются более подвижные ионы Н+. [c.158]

    Кондукто.четрическое детектирование традиционно используют в анализе ионов, ввиду отсутствия у последних собственного поглощения и люминесценции. При появлении в зоне детектирования анализируемого иона электропроводность раствора меняется. Одна из проблем этого вида детектирования связана с возникновением помимо фоновой электропроводности электролита некоторой электропроводности в зоне вещества, которая может быть решена использованием подавительной схемы детектирования [141]. В результате ионного обмена буферный противоион образует слабо диссоциирующие кислоту (анализ анионов) или основание анализ катионов). Снижается общая проводимость буферного раствора но возрастает разница между электропроводностью пробы и буфера. Подавительная техника практически не используется при анализе катионов из-за необходимости работы с низкими значениями pH электролитов, а, следовательно, малыми скоростями ЭОП и затруднениями в транспортировке пробы в зону детектирования. Эта схема приводит также к экстраколоночному размыванию зон компонентов, что ограничивает эффективность разделения. [c.353]


Смотреть страницы где упоминается термин Электропроводность растворов слабых кислот и оснований при: [c.121]    [c.599]    [c.174]    [c.137]    [c.517]    [c.198]    [c.105]    [c.86]   
Смотреть главы в:

Краткий справочник физико-химических величин Издание 5 -> Электропроводность растворов слабых кислот и оснований при

Краткий справочник физико-химических величин Издание 6 -> Электропроводность растворов слабых кислот и оснований при

Краткий справочник физико-химических величин Издание 7 -> Электропроводность растворов слабых кислот и оснований при




ПОИСК





Смотрите так же термины и статьи:

Кислота слабые

Кислоты слабых слабыми основаниям

Основания и кислоты

Основания слабые

Основания слабые, растворы

Растворы слабых кислот и оснований

Слабов

Слабые растворы

Термодинамическая константа диссоциации слабых кислот и оснований и молекулярная электропроводность растворов при

Электропроводность кислот

Электропроводность растворов ПАВ



© 2025 chem21.info Реклама на сайте