Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид золота

    Такие металлы, как титан, тантал, молибден, цирконий,, ниобий и другие, а также ряд нитридов, карбидов, силицидов тугоплавких металлов нашли применение в некоторых отраслях промышленности. Эти металлы и их сплавы обладают ценными физическими и химическими свойствами и значительной коррозионной устойчивостью в сильноагрессивных средах, которая в некоторых случаях превосходит устойчивость нержавеющих сталей, платины, золота и серебра. [c.149]


    Полярографические свойства большинства элементов изучены в электролитах различного состава. Благодаря этому можно путем подбора соответствующих комплексообразующих веществ производить определение нескольких элементов в одном растворе. Особый интерес представляет использование нескольких комплексообразующих веществ, из которых одни вызывают сдвиг потенциалов восстановления или окисления определяемых элементов, а другие — маскировку сопутствующих элементов [1]. Большие возможности открываются также для совместного определения нескольких элементов при применении неводных растворов (ацетонитрил, формамид, спирты и др.), в особенности при полярографировании в крайне отрицательной области потенциалов (щелочные и щелочноземельные металлы). Широко применяются в полярографическом анализе твердые электроды из платины, золота, серебра, графита, карбида бора и др. Особенно важную роль они должны сыграть при использовании принципа полярографии в качестве датчика в автоматическом анализе. [c.192]

    Получение карбида золота(I). [c.1110]

    Эндотермичными среди неорганических соединений являются гидриды неметаллов (силаны, бораны и др.), оксиды азота и хлора, нитриды, карбиды, цианиды, соединения золота и некоторые другие вещества среди органических соединений — это многие углеводороды. [c.17]

    Гидриды, карбиды, нитриды, сульфиды и фосфиды металлов. Золото практически не растворяет водорода. При обыкновенном давлении растворимость водорода в расплавленной меди составляет 13 JH /IOO г металла, а в расплавленном серебре 0,4 см /100 г. Растворенный водород сообщает этим металлам хрупкость и резко снижает механические свойства ( водородная болезнь ). Косвенным путем можно получить гидриды СиН и AgH, но они очень неустойчивы и разлагаются при 60—70° С. [c.155]

    Из-за малой активности золото и серебро на воздухе не изменяются. С кислородом непосредственно (при нагревании) соединяется только Си с серой — Си и особенно Ag. С водородом, азотом и углеродом все три металла не взаимодействуют. Полученные искусственно нитриды и карбиды Си и Ag — весьма непрочные соединения. Наиболее легко металлы 1Б группы взаимодействуют с галогенами для Си и Ад получены фториды, хлориды, бромиды и йодиды для Аи — фториды и хлориды. [c.551]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Большинство, металлов также подвергается коррозии. Никель пассивируется слоем хемосорбированного фторида никеля, а алюминий — пленкой окиси алюминия, оба металла и их сплавы (монель, инконель, легкие сплавы) оказались превосходными конструкционными материалами для оборудования заводов. Малоуглеродистые стали, медь, золото, серебро, платина и индий в этом отношении были бы посредственными материалами. На газодиффузионных заводах малоуглеродистые стали (в случае их применения) покрываются слоем никеля (электролитически или химически) на всех поверхностях, контактирующих с гексафторидом урана. Загрязнения тппа осадков сульфидов, силикатов пли карбидов реагируют с гексафторидом урана и газообразными продуктами его разложения — F2 и НЕ в первую очередь [3.14, 3.18, 3.205]. [c.123]

    Скорость реакции на отрицательном электроде ниже, чем на Положительном, поэтому рекомендуется применение катализаторов карбида циркония, висмута, сплава свинец - золото (Аи до 0,25 г/м ). [c.214]

    В т. 3 обсуждается структурная химия соединений углерода (дианидов, карбидов, карбонилов и алкилов металлов), кремния, бора, меди, серебра, золота, элементов ИБ—IVB групп, VUI группы периодической системы и других переходных элементов, лантаноидов, актиноидов, а также металлов и сплавов. [c.4]

    Пористые перегородки изготовляются также из фарфора, стекла, карбида кремния и ряда металлов (мо-нель, инконель, бронза, хастеллой, стеллит Ь-605, золото, платина и нержавеющая сталь многих марок). Воздухопроницаемость пористых перегородок свидетельствует об относительно невысоком сопротивлении этих материалов гомогенным жидкостям, однако сопротивление смоченных перегородок потоку газа возрастает. [c.89]

    Основное направление научных исследований — техническая электрохимия. Разработал (1882) метод производства животного угля. Предложил (1886) получать натрий восстановлением каустической соды карбидом железа. Развил методы производства натрия и калия электролизом соответственно соды п поташа. Разработал процесс производства натрия электролизом его хлорида. Предложил (1894) несколько способов получения циани дов, необходимых для извлечения золота из руд. [318, 340] [c.232]

    Не поглощают водород золото, вольфрам, ртуть. Наиболее опасно внедрение водорода в сталь — основной современный конструкционный материал, чугун, железо. При высокотемпературном наводороживании водород разрушает карбиды железа, которые упрочняют сталь. При этом структура стали меняется, а ее прочность резко падает. Титановые, ванадиевые, молибденовые стали являются надежным средством против водородной коррозии. Карбиды этих металлов не реагируют с атомами водорода. Роль этих металлов при получении качественных сталей заключается в том, что они связывают весь углерод и тем самым предотвращают образование нестойких к водороду карбидов железа. [c.500]

    Абсорбционным методом железо можно определить по линии Ре 248,3 ммк в пламени смеси ацетилена с воздухом. Используется трубка с полым катодом из железа при силе тока 60 ма. Рекомендуется использовать слегка обогащенное ацетиленом пламя. При длине поглощающего слоя пламени 12 см чувствительность определения составляет 0,1—0,5 мкг мл Ре, Посторонние вещества оказывают сравнительно малое влияние на отсчеты для оптической плотности пламени, однако вещества, влияющие на скорость распыления, изменяют их. Метод был применен для определения железа в водах почвах, вытяжках почв, в растениях в карбиде вольфрама в золоте высокой чистоты 2- [c.290]

    С углеродом медь, серебро и золото непосредственно не соединяются. Растворимость углерода в расплавленных металлах незначительна 0,0012% у серебра, 0,003% у меди и 0,3% у золота. Пропуская ацетилен (С2Н2) в растворы солей данных металлов (лучше в аммиачной среде), можно получить их карбиды СиСг, Ag2 2 и AU2 2. Эти карбиды — эндотермические соединения и разлагаются со взрывом. [c.155]

    Другие виды катализаторов менее универсальны, чем платиновые металлы. Во многих случаях они химически недостаточно устойчивы и поэтому не могут быть использованы. На практике в качестве электродов-катализаторов применяют металлы (никель и другие металлы железной группы, серебро, золото, ртуть), углеродные материалы (графит, активный уголь, стекло-углерод, сажа), оксиды (простые оксиды ряда металлов, смешанные оксиды шпинельной или перовскитной структуры), твердые соединения (карбид вольфрама). В последние годы было показано, что в ряде реакций в качестве катализаторов могут быть использованы органические комплексные (металлосодержащие). соединения—фталоцианины, порфирины, а также полимерные вещества, получающиеся при их термической обработке. [c.384]


    Золото и углерод. Так же как для серебра, возможно образование карбида золота AU2 2 путем обработки ацетиленом растворов солей зощота,. Соединение это очень неустойчиво и представляет собой взрывчатое вещество. Расплавленное зашто даже при значительном перегреве выше температуры плавления может растворить только около 0,3% С. [c.121]

    Разнообразно применение, как указывалось, алмаза, а[стивных углей, карборунда Si , СаСа, карбидов переходных металлов, карбонатов (см. гл. 11 и 12), сероуглерода ( Sj), тетрахлорида (СО,), цианидов для извлечения золота из руд но методу П. Р. Багратгюна. Si используют для получения сплавов, полуироводииковых устройств (используется кремний особой чистоты). [c.301]

    С водородом, углеродом и азотом медь, серебро и золото непосредственно не взаимодействуют. При высоких температурах медь может реагировать с углеродом с образованием карбида СигС. В тон-коизмельченном состоянии эти металлы при 400—650° С соединяются с парами фосфора с образованием фосфидов. [c.151]

    Взаимодействие графита с большинством металлов и некоторыми металлоидами при соответствующих температурах приводит к образованию карбидов. Не образуют карбидов цинк, кадмий, ртуть, галлий, индий, таллий, олово, свинец и висмут. Медь, серебро и золото образукзт нестойкие карбиды, разлагающиеся со взрывом. Большинство конструкционных материалов на основе металлов взаимодействует с графитом, образуя карбиДы стехнометрического состава, или науглероживаются с образованием нестабильных карбидов, распадающихся при температурах ниже температуры образования карбида. Образование карбидов, как правило, сопровождается увеличением прочности и твердости материалов. Многие металлы начинают взаимодействовать с углеродом значительно ниже температуры их плавления. [c.127]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    В т. 3 обсуждается структурная химия соединеннй углерода (цианидов, карбидов, карбонилов и алкнлоа металлов), кремния, бора, меди, серебра, золота, элементов ИБ—1УБ групп, VIII группы периодической системы н других переходных элементов, лантаноидов, актиноидов, а также металлов н сплавов. [c.4]

    Современные твердофазные материалы исключительно многообразны по составу /И охватывают практически все элементы периодической системы. Как правило, материалы имеют сложный состав, включая три и более химических элемента. Из простых веществ в качестве материалов используют в основном алюминии, медь, углерод, кремний, германий, титан, никель, свинец, серебро, золото, тантал, молибден, платиновые металлы. Материалы на основе бинарных соединений также сравнительно немногочисленны. Среди них наиболее известны фториды, карбиды и нитриды переходных металлов, полупроводники типа халькоге-нидов цинка, кадмия и ртути, сплавы кобальта с лантаноидами, обладающие крайне высокой магнитной энергией, и сверхпровод-никовые сплавы ниобия с оловом, цирконием или титаном. Намного более распространены сложные по составу материалы. В последнее время нередко в химической литературе можно встретить твердофазные композиции, содержащие в своем составе свыше 10 химических элементов. [c.134]

    NbHi получают путем катодного насыщения водородом компактного металла в электролитической ячейке. Кусок ниобиевой жести с целью очистки и активирования предварительно в течение 15 мин нагревают в индукционной печи до 2000°С и вакууме 10-6 р - Затем ниобиевую жесть обвязывают золотой проволокой и подвешивают в качестве катода на золотой проволоке в электролите 6 н. H2SO4. Анод, представляющий собой палочку из карбида бора (например, 6X12x70 мм), укрепляют Hai [c.1543]

    Для синтеза дигидрида ниобия используют ниобий в виде ниобиевой жести. Кусок жести величиной около 1 см и толщиной 0,1 мм нагревают в индукционной печи при температуре 2000° С в вакууме не менее 2 10- мм рт. ст. После обработки чистота ниобия должна быть не менее 99,9 вес.%. Ниобиевую жесть обматывают золотой проволокой диаметром 0.3 мм и используют в качестве катода. В качестве анода применяют штабик карбида бора сечением 6X12 и длиной 70 мм, один конец которого обмотан алюминиевой фольгой. В качестве электролита применяют 6-н. серную кислоту, которую периодически заменяют для избежания выделения борной кислоты. Анод погружают в ванну не глубже 8 мм. Расстояние между электродами около 3 см. Электролиз проводят при напряжении около [c.91]

    Одним из приемов выявления гетерогенности поверхности при электронно-микроскопическом исследовании является декорирование. Сущность этого приема заключается в том, что на поверхность наносится вещество, способное концентрироваться на некоторых деталях поверхности, например дефектах, делая их видимыми. При этом наблюдаются не сами дефекты, а частицы декорирующего вещества. Таким способом еще в 1947 г. с помощью капелек росы удалось наблюдать сложнейший рисунок поверхности зеркальногладкой грани карбида кремния и других кристаллов [288—290]. Для получения более стабильных образцов быстро испаряющаяся вода была заменена конденсатом хлорида аммония [288—290]. Однако наибольшее распространение получила предложенная Бессетом техника декорирования путем вакуумного распыления некоторых металлов (золота, платины) [291—297]. Метод декорирования поверхности напылением металла в вакууме позволяет не только наблюдать некоторые особенности строения поверхности, но и изучать динамику изменения поверхности при нагревании, под действием влаги и других факторов [243]. На рис. III.4 (см. вклейку) в качестве примера, иллюстрирующего возможности метода декорирования, приведен снимок поверхности скола минерала галита. [c.98]

    Дегидратация уксусной кислоты в уксусный ангидрид (широко упот-требляемый в синтетических процессах) Карбид кремния, [пропитанный ортофосфорной кислотой (трубка сделана из платины или золота) 816 [c.136]

    Подобные алюминиевые покрытия эффективны для защиты крепежных изделий из высокопрочной стали, титана и алюминиевых сплавов, эксплуатируемых в морской воде. Для защиты подшипников из углеродистой стали от коррозии были применены ионные покрытия из нержавеющей стали 304, а алюминиевых — из нержавеющей стали 310 [70]. Покрытия из алюминия, золота и нержавеющей стали наносят на крепежные изделия и другие мелкие детали для защиты их от коррозии и улучшения механических свойств. Особенности технологии нанесения ионных покрытий на мелкие детали рассмотрены в работе [71]. Для защиты от коррозии отдельных узлов установок газификации угля предложено наносить покрытия толщиной 10—100 мкм из А12О3. На тонкое покрытие, нанесенное методом ионного осаждения, можно наносить толстое покрытие гальваническим методом. Например, можно сочетать процесс ионного осаждения медного покрытия толщиной 25 мкм на титан с последующим осаждением толстого (500 мкм) слоя меди в обычной гальванической ванне (чисто гальваническим методом медное покрытие на титан осаждать не удается) [70]. Особенно перспективен метод ионного осаждения при нанесении покрытий на непроводящие детали (карбид вольфрама, пластмассы, керамику и др.), т. е. на детали, на которые другими методами осадить металлические покрытия сложно или вообще нельзя. [c.129]

    Карбид закисной ртути, серое взрывчатое вещество состава aHg, Н2О, готовится пропусканием ацетилена через водные растворы уксуснокислой закиси ртути в тем ноте . Из растворов золота, палладия и ос.мия ацетилен осаждает мелаллы или в свободно м состоянии, или в виде двойных соединений, но совершенно не реагирует с солями железа, никеля, кобальта, свинца, кадмия, платины, иридия, родия, цинка, мышьяка или олова. [c.729]

    Золото не реагирует с углеродом даже при высоких температурах. Соединение золотэ с этим элементом может быть получено косвенным путем — воздействием ацетилена на раствор тиосульфатного комплекса золота, при этом образуется желтый карбид Auj s, точнее ацетилид золота, который крайне взрывоопасен. [c.84]


Смотреть страницы где упоминается термин Карбид золота: [c.1109]    [c.1497]    [c.209]    [c.91]    [c.42]    [c.196]    [c.498]    [c.292]    [c.143]    [c.8]    [c.171]    [c.764]    [c.772]    [c.63]    [c.275]    [c.392]    [c.553]   
Руководство по неорганическому синтезу Т 1,2,3,4,5,6 (1985) -- [ c.1109 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод Цианиды, карбиды, карбонилы и алкилы металлов Кремний Бор Медь, серебро, золото Элементы



© 2025 chem21.info Реклама на сайте