Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние коррозии на механические свойства сталей

    Материалы для изготовления сосудов и аппаратов высокого давления следует выбирать в соответствии со спецификой их конструктивного исполнения, изготовления и эксплуатации, а также с учетом возможного изменения исходных физико-механических свойств материалов, находящихся под коррозионным воздействием обрабатываемой среды в условиях данного химико-технологического процесса. Так, при обработке водородсодержащих веществ на работоспособность аппарата оказывает особое влияние водородная коррозия, а при рабочих температурах выше 350 °С — ползучесть материала (стали). Кроме того, всегда нужно стремиться к низкой стоимости оборудования. Поэтому при выборе материалов предпочтение [c.118]


    Механические свойства стали могут изменяться под влиянием коррозионной среды, действовавшей еще до начала эксплуатации металла (его нагружения), например при предварительной коррозии металла. В этом случае прочность, выносливость и пластичность изменяются вследствие коррозионного поражения металлов, часто имеющего вид концентраторов напряжения (в нашей монографии этому вопросу посвящена IV глава). [c.6]

    ВЛИЯНИЕ УСЛОВИЙ КОРРОЗИИ В СЕРОВОДОРОДНЫХ ДРЕНАЖНЫХ ВОДАХ ИЗ НЕФТЕЗАВОДСКИХ АППАРАТОВ НА НАВОДОРОЖИВАНИЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ [c.81]

    Равномерная коррозия, поражающая только тонкий поверхностный слой металла, практически не оказывает влияния на механические свойства стали, хотя и известно, что оксидные пленки, плотно соединенные с металлом, препятствуют выходу дислокаций на поверхность и вызывают их скопление в приповерхностном слое, чем повышают прочность и снижают пластичность металла подобно поверхностному наклепу. [c.65]

    В книге также рассматривается влияние на механические свойства как анодных, так и катодных процессов, возникающих при действии электрохимической коррозии. Приводятся новые данные о водородной хрупкости стали, вызванной коррозионной средой, и коррозионной усталости при длительном действии статического или циклического нагружения. [c.2]

    Ниже показано влияние водородной коррозии на механические свойства сталей различных марок, обрабатывавшихся азото-водородной смесью при 300 ат и 500—530° С в течение 250 ч [7]  [c.132]

    В США [127], [131], [132], [148] процессу нитроцементации подвергают мелкие детали из углеродистых и легированны к сталей различных марок. Рекомендуется этот процесс преимущественно из-за рентабельности и повышения стойкости против износа и коррозии. Влияние процесса нитроцементации на механические свойства сталей не исследуется. [c.113]

    ВЛИЯНИЕ КОРРОЗИИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛЕЙ [c.14]

    Материалы для изготовления сосудов и аппаратов высокого давления следует выбирать в соответствии со спецификой их конструктивного исполнения, изготовления и эксплуатации, а также с учетом возможного изменения исходных физико-механических свойств материалов, находящихся под коррозионным воздействием обрабатываемой среды в условиях данного химико-технологического процесса. Так, при обработке водородсодержащих веществ на работоспособность аппарата оказывает особое влияние водородная коррозия, а при рабочих температурах выше 350 °С - ползучесть материала (стали). Кроме того, всегда нужно стремиться к низкой стоимости оборудования. Поэтому при выборе материалов предпочтение следует отдавать наиболее дешевым и менее дефицитным маркам стали, удовлетворяющим всем другим требованиям, вытекающим из условий эксплуатации оборудования (достаточной прочности, коррозионной стойкости, долговечности и т.д.). Известно, что углеродистые и низколегированные стали в несколько раз дешевле высоколегированных (теплоустойчивых, жаропрочных и коррозионно-стойких). [c.42]


    Несмотря на то, что исследуемые стали, применяемые в аналогичных эксплуатационных условиях, имеют примерно одинаковый химический состав и механические свойства с учетом состояния поставки, они существенно отличаются по структуре (степенью и характером загрязненности, размером зерна). Это, в свою очередь, оказывает влияние на их коррозионное поведение в условиях общей и локальных видов коррозии. [c.22]

    Изложены вопросы теории ингибирования коррозии железа и стали в кислых средах. Приведена классификация существующих ингибиторов. Систематизированы основные закономерности защитного действия ингибиторов и их смесей. Рассмотрено влияние ингибиторов на механические свойства металлов, коррозионное растрескивание, усталость и наводороживание при коррозии в кислых средах, Дан подробный обзор известных ингибиторов коррозии и рассмотрено их применение в различных отраслях промышленности. Проанализированы экономические аспекты ингибирования кислых сред. [c.2]

    Влияние деформационного старения на степень механохимической коррозии проявляется через величину пластической деформации и прочностные свойства стали. Это четко видно из кинетического уравнения механической повреждаемости [36]  [c.798]

    Изменение усталостной прочности стали в зависимости от ее механической обработки в связи с предварительной коррозией объясняется напряженным состоянием в приповерхностных слоях стальных образцов, упрочнением или разрыхлением их поверхности, а также развитием дефектов (например, их завальцовкой), т. е. изменением физико-механических свойств под влиянием различных видов обработки. [c.74]

    В П1-2 было указано о роли дефектов в металле при его взаимодействии со средой развитие этих дефектов при механической обработке должно способствовать влиянию среды на механические свойства металла и, наоборот, устранение дефектов — препятствовать этому влиянию. В коррозионных средах особое значение приобретают неравномерно распределенные остаточные напряжения, вызываемые механической обработкой, следствием которых является появление на поверхности, соприкасающейся со средой, градиентов напряжения Хорошо известно влияние градиентов напряжения на коррозионную статическую усталость стали. Остаточные напряжения растяжения, вызванные механической обработкой, являются причиной коррозионного растрескивания и, наоборот, появление остаточных напряжений сжатия ликвидирует его. Шероховатость поверхности и наклеп приповерхностного слоя в этих случаях, очевидно, играют меньшую роль, хотя известно, что с увеличением шероховатости возрастают.потери в весе от коррозии и снижается коррозионная стойкость стали, не находящейся под напряжением. [c.142]

    С одной стороны, термообработка после сварки не только снимает напряжения, но и может уменьшить максимальные значения твердости в зоне термического влияния сварки и неблагоприятное влияние сварки на механические свойства основного материала. С другой стороны, неправильно назначенный режим термообработки может ухудшить свойства стали. В случае аустенитных сталей, где важна коррозионная стойкость, соответствующая термообработка может восстановить способность стали сопротивляться таким видам коррозии, как общая, точечная, и коррозии под напряжением. В то же время выбор неправильной температуры термообработки может привести к выделению карбидов и другим эффектам, снижающим механические свойства, а также коррозионную стойкость. [c.280]

    Для выяснения влияния на механические свойства стали катодных процессов при коррозии, а также для уточнения влияния анодных процессов в лаборатории Института машиноведения и автоматики АН УССР были проведены опыты по определению некоторых [c.7]

    Снижсинс механических свойств при воздействии кислых сред может быть вызвано НС только водородным охрупчиванием, но и изменением микрорельефа поверхности в результате интенсивного протекания локальных коррозионных процессов, приводящих к образованию концентраторов напряжений, межкристаллитной коррозии и т. п. Для разделения процессов водородного охрупчива- ния и локальных анодных процессов используют искусственное старение образцов после воздействия кислых сред на металл при температурах 150—200 °С с последующими механическими испытаниями [115, 116]. Степень влияния водорода на механические свойства сталей оценивают также по изменению характеристик технологических проб на перегиб или скручивание. Эффект наводороживания зависит от времени воздействия агрессивной среды, температуры, концентрации и природы кислоты, природы и концентрации ингибитора [103, 115, 141]. [c.82]


    Хром в легированных сталях может присутствовать в виде твердого раствора с железом, а главным образом, в виде карбидов различного состава СгдСа, СгуСд, СГадСд. Хром оказывает положительное влияние на механические свойства сплава понижает скорость закалки, увеличивает твердость, уменьшает деформируемость, повышает сопротивление коррозии и жароупорность. [c.314]

    Известно, что никелирование вызывает появление в поверхностном слое металла остаточных растягивающих напряжений, доходящих до 40—50 кПмм . Никелирование часто применяется в качестве защиты стальных деталей от коррозии. Исследования И. В. Кудрявцева [70] показали, что никелирование не влияет на статические механические свойства стали предел прочности, предел текучести, удлинение и поперечное сжатие практически не изменяются. Однако никелирование снижает выносливость стали в воздухе, что объясняется действием остаточных растягивающих напряжений. Таким образом, никелирование как метод создания остаточных растягивающих напряжений в стали вполне приемлем для исследования влияния этих напряжений на адсорбционный эффект снижения выносливости. [c.129]

    В реагенте РВ-ЗП-1 проявляется специфическое влияние А1С1з на кинетику коррозии процесс протекает с выраженным анодным контролем, а стадийность реакции катодного выделения водорода не оказывает существенного воздействия на скорость коррозии стали и ее механические свойства. Так, снижение относительного удлинения стандартных образцов стали при испытаниях на разрыв в реагенте РВ-ЗП-1 не превышает 0,5%. [c.288]

    В анпаратостроении следует учитывать влияние технологии обработки давлением и, в частности, гибочных операций на механические свойства и коррозионную стойкость некоторых легированных сталей. Так, для стали Х17Н2 после нагрева в интервале температур 800—1180° С обнаружена межкристаллитная коррозия восстановление исходных свойств связано с последующей термической обработкой [52]. [c.158]

    Обобщены и систематизированы данные, полученные при металлографических исследованиях микроструктуры, фазового состава, механических свойств и коррозионной стойкости в зависимости от режима термической обработки горячекатаного листового проката, коррозионно-стойких сталей и сплавов. Приведены их микроструктуры после различных нагревов. Рассмотрен характер коррозионного разрушения сварных соединений коррозия ножевого типа, структурноизбирательная и межкристаллнтная в зоне термического влияния после испытания в азотной, серной и фосфорной кислотах. Рекомендованы режимы термической обработки, обеспечивающие высокую коррозионную стойкость сталей и их сварных соединений. [c.320]

    Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д. [c.4]

    Скорости и типы коррозии всех сплавов приведены в табл. 81. Некоторые из сталей были покрыты неорганическими покрытиями, состояние которых после испытаний приведено в табл. 82. Данные о чувствительности сталей к коррозионному растрескиванию под напряжением приведены в табл. 84. Определялось также влияние коррозии на механические свойства ряда сплавов при различных периодах их экспозиции (табл. 85). Состав воды вблизи поверхности в открытом море достаточно однороден по всем океанам [20]. Поэтому скорости коррозии сталей, экспонированных в сходных условиях в чистой морской воде, должны быть сравнимы между собой. Результаты многих исследований по коррозии конструкционных сталей у поверхности морской воды в различных местах по всему миру показывают, что после корси-кого периода экспозиции скорости коррозии постоянны и находятся в пределах от 0,076 до 0,127 мм/год [21, 22]. Факторами, которые могут вывести скорости коррозии из этих пределов, являются загрязнение моря, примеси в морской воде, около берегов, различия скоростей морских течений и различия в температуре воды у поверхности. [c.225]

    Химический состав нержавеющих сталей серип AISI 200 приведен в табл. 112, скорости коррозии и типы коррозип —в табл. ИЗ, влияние экспозиции иа их механические свойства — в табл. 114. [c.310]

    Химический состав нержавеющих сталей серии AISI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AISI 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии пе показало наличия между ними определенных корреляций. [c.313]

    Химический состав нерл авеющих сталей серии AISI 400 приведен в табл. 119, скорости и типы коррозии — в табл. 120, коррозионное поведение под напряжением — в табл. 121 и влияние экспозиции на их механические свойства — в табл. 122. [c.329]

    Опытно-промышленное производство и эксплуатация оборудования на стали 02Х8Н22С6 показали склонность металла шва к образованию горячих трещин, ухудшение механических свойств сварных соединений, ие удовлетворяющее требованиям ОСТ на аппаратуру ответственного назначения, и склонность металла в зоне термического влияния после сварки к межкристаллитной коррозии [27]. [c.334]

    Отмечается, что нет четкой связи между строением органических радикалов, адсорбционными, защитными свойствами ингибиторов и влиянием их на долговечность стали 20. Однако данные коррозионноусталостных и коррозионных испытаний хорошо коррелируют между собой. Так, наиболее эффективный ингибитор, содержащий в молекуле радикал изопропил, обеспечивает максимальное торможеиие коррозии и максимальную долговечность, а содержащий изобутил — минимальную защиту и от коррозии и от коррозионно-механического разрушения. Наличие подобной корреляции позволяет по мнению авторов считать, что долсо-вечность стали 20 при малоцикловых испытаниях в 5М НС1 определяется в основном коррозионно-механическим фактором и водородным охрупчиванием. [c.81]

    Коррозия сталей и сплавов в кислых средах сопровождается их наводорожи-ванием. Наличие водорода оказывает сильное влияние на их механические свойства, вызывает явление водородной хрупкости. [c.82]

    Коррозию дюралюминия (Д16) в контакте с другими металлами в естественных атмосферных условиях изучали Павлов и Маслова [50]. Испытания проводили в деревянных будках, обеспечивающих беспрепятственный доступ атмосферного воздуха извне к металлу, но исключающих непосредственное попадание атмосферных осадков на образцы. Результаты, полученные после годичного срока испытаний в промышленной атмосфере, представлены на рис. 52. Коррозию определяли по изменению механических свойств аь и 6) металла. Опыты выявили вполне определенное влияние природы контактирующего металла. Наиболее сильное уменьшение относительного удлинения вызвали медь, латунь и нержавеющая сталь 1Х18Н10. Контакт с цинком и кадмием оказался полезным потеря механических свойств была ниже, чем у контрольных образцов. Имела место некоторая защита. По мнению авторов, имеется принципиальное различие в характере влияния анодного контакта на анодированные и неанодированные сплавы. При наличии на поверхности металла оксидной пленки влияние контакта не ограничивается лишь участком, прилегающим непосредственно к месту контакта, а распространяется на значительное расстояние (около 100 мм). [c.132]

    В настоящее время титан и его сплавы почти не находят применения при изготовлении аппаратуры для производства пергидроля, что, по-видимому, объясняется отсутствием достоверных данных, об их коррозионной стойкости в растворах перекиси водорода и способности катализировать ее разложение [1]. Между тем по своим физико-механическим свойствам эти сплавы могли бы применяться для этих целей и заменить хотя бы часть дефицитной стали Х18Н10Т, расход которой для аппаратурного оформления крупно-тоннажных производств очень велик. Однако это возможно лишь при отсутствии значительного каталитического влияния поверхности титана или его растворимых продуктов коррозии на разложение перекиси водорода. Поэтому определение совместимости титановых сплавов с растворами перекиси водорода представляет несомненный интерес. [c.123]


Библиография для Влияние коррозии на механические свойства сталей: [c.402]   
Смотреть страницы где упоминается термин Влияние коррозии на механические свойства сталей: [c.69]    [c.245]    [c.329]    [c.66]    [c.199]    [c.15]    [c.458]    [c.533]    [c.42]    [c.87]    [c.362]    [c.199]    [c.77]   
Смотреть главы в:

Коррозионное растрескивание и защита высокопрочных сталей -> Влияние коррозии на механические свойства сталей




ПОИСК





Смотрите так же термины и статьи:

Коррозия влияние

Сталь механические свойства

Сталь свойства

влияние механических



© 2025 chem21.info Реклама на сайте