Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники газоразрядные

    Для получения спектров трудновозбудимых элементов применяют источники с высокой электронной температурой, которая достигается при низких давлениях. Пример такого источника — газоразрядная трубка с полым катодом (см. гл. П). [c.97]

    Важнейшими требованиями, предъявляемыми к источникам света для фотохимических синтезов, являются максимальный к.п.д. преобразования электрической энергии в энергию акти-ничного излучения, компактность и достаточная интенсивность в требуемом диапазоне длин волн. В настоящее время в фотохимии применяются два основных типа источников — газоразрядные лампы и лампы накаливания. [c.200]


    В газоразрядных лампах используется излучение положительного столба низкого давления или непосредственно, или путем последующего возбуждения флуоресценции ультрафиолетовым излучением (люминесцентные лампы). В натриевых и ртутных лампах в качестве источника света используется дуга с горячим катодом, которая зажигается в парах указанных элементов. Величина давления в лампе определяется ее рабочей температурой, поэтому вакуумный объем, в котором происходит разряд, термически изолируют, заключая лампу в еще один вакуумированный стеклянный баллон. Лампы работают на переменном токе, и поэтому каждый электрод снабжен термоэлектронным эмиттером электронов в виде слоя оксида. Зажигание и разогрев лампы происходят под воздействием высоковольтных импульсов, вырабатываемых при размыкании индуктивной цепи или при введении дополнительного газа (неона). [c.94]

    В качестве основных источников света при электрическом освещении используются лам Л1 накаливания и газоразрядные лампы на напряжение 220 В. Газоразрядные лампы чрезвычайно экономичны и имеют значительно больший срок службы, чем лампы накаливания. На НПЗ используются следующие типы газоразрядных ламп  [c.148]

    Электробезопасность. В лабораторных стационарных спектральных установках допускается использование в качестве источников возбуждения спектров конденсированной искры при напряжении не выше 15 000 В дуги переменного тока в дуговом и искровом режимах при напряжении не выше 220 В дуги постоянного тока при напряжении не выше 220 В газоразрядных трубок, питаемых постоянным и переменным током при напряжении не выше 1500 В воздушно-ацетиленового пламени. [c.95]

    Для получения свободных атомов анализируемое вещество наг -вают до высокой температуры в пламенах. Способы введения вещества в пламена и происходящие при этом процессы описаны в Методах эмиссионной фотометрии пламени . Помимо пламен для атомизации веществ в атомно-абсорбционном методе используют специальные печи-кюветы, в которые вводят небольшое количество пробы (чаще всего в виде капли раствора). При повышении температуры печи вещество испаряется и атомизируется. Происходящие при этом процессы аналогичны процессам в пламенах. В качестве источников излучения, ослабление интенсивности которого определяется, могут быть использованы, например, лампы накаливания или различного рода газоразрядные лампы, испускающие непрерывные (сплошные) спектры в широких спектральных областях. [c.35]


    В качестве источников излучения, специфичных для атомов различных элементов, обычно применяют газоразрядные трубки с полым катодом. Цилиндрический полый катод изготавливают из элемента, резонансное излучение которого должно быть возбуждено работу проводят при напряжении 400 В и силе тока 100 мА. В качестве материала катода иногда используют сплавы, тогда получают резонансные частоты излучения ряда элементов в одной трубке например, сплавы меди, цинка и свинца можно использовать для одновременного определения этих трех элементов. Однако при этом существует возможность изменения состава сплавов на поверхности катода из-за неравномерного испарения и, как следствие, изменение интенсивности излучения наиболее летучего компонента. [c.379]

    Обычно люминесценцию возбуждают облучением объекта коротковолновыми лучами видимого или УФ-диапазона спектра. В качестве источников возбуждения используют лампы накаливания или газоразрядные лампы. В последнее время для этой цели применяют лазеры. Из газоразрядных ламп в люминесцентном анализе обычно используют ртутные лампы, дающие линейчатый спектр. Характер излучаемого спектра зависит [c.213]

    Источники излучения. В абсорбционной молекулярной спектроскопии используют два типа источников излучения — тепловые и электроразрядные (газоразрядные). Тепловые источники — вакуумные и газонаполненные электрические лампы с нитью накала в виде спирали из тугоплавких металлов или стержня из оксидов редкоземельных металлов. Тепловые источники обладают непрерывным [c.54]

    Широкое применение в различных областях техники и в быту получили плазменные источники света, в которых плазму получают действием электрических разрядов в лампах, наполненных газом. Возникающая в лампе плазма может непосредственно излучать видимый свет (газосветные лампы) или же давать излучение, которое при помощи люминофоров преобразуется в видимый свет (люминесцентные лампы). Плазменные источники света иначе называют газоразрядными. Они имеют более высокие коэффициенты полезного действия, чем лампы накаливания, а также обладают рядом других ценных свойств. Так, газосветные лампы в зависимости от природы газа — наполнителя могут излучать свет различных цветов. Люминесцентные лампы могут давать излучение, близкое по составу к дневному свету. [c.253]

    Фотоэлектрический спектрофотометр СФ-4 (рис. 98) применяется для работы в видимой и ультрафиолетовой частях спектра. Свет от источника излучения — водородной лампы (газоразрядная трубка, наполненная водородом и снабженная катодом с подогреванием) или [c.255]

    Источник света — газоразрядная трубка сделана в виде длинного капилляра со стенками, прозрачными в рабочей области. Какой [c.116]

    Поскольку плазма не находится в равновесии, ее характеристики отвечают лишь определенным стационарным процессам. Непрерывно происходит ионизация и нейтрализация зарядов, выделение энергии внутри плазмы и охлаждение вследствие взаимодействия с окружающей средой. При этом наиболее трудно происходит обмен энергией между ионами и электронами, что обусловлено большим различием в их массах. Поэтому отсутствует термическое равновесие между ионами и электронами, а также и нейтральными частицами (молекулами). Энергию от электрических источников (например, дуг) непосредственно получают электроны. Вследствие этого 7 а>7 и>7 м, где Тэ, Ти, 7 м — температуры электронов ионов и молекул (или атомов). В газоразрядных трубках Гэ имеет порядок 10 С, а Та и Ты лишь (1—2)-10 °С. В дуговом разряде, где плотность газа выше и число столкновений больше, величины Та, Тя и Та сближаются. При этом Т и Тм достигают около 6000° С. [c.357]

    В качестве счетчика целесообразно применять сцинтилляционный счетчик, обладающий высокой эффективностью счета (30-50 %). Последнее обстоятельство очень важно, так как при использовании источников малой активности применение газоразрядных счетчиков требует значительно большей постоянной времени интегрирующей цепи, что накладывает существенные ограничения на скорость движения датчика по трубе, а следовательно и на скорость проведения замеров. [c.46]

    Интенсивность флуоресцентного излучения зависит от интенсивности возбуждающего излучения и квантового выхода процесса возбуждения. Поэтому для повышения чувствительности метода следует использовать достаточно мощные источники света, например газоразрядные лампы или лазеры. Применение лазеров позволяет детектировать количество вещества на уровне 10 г. Метод двухфотонного лазерного возбуждения отдает возможность использовать лазер с более низкой энергией, например, аргоновый. Для внедрения в практику такого метода необходимо иметь достаточно широкий спектр лазеров, перестраиваемых по длинам волн. Чувствительность детекторов по флуоресценции для некоторых соединений оказывается на несколько порядков выше чувствительности детекторов по поглощению, поскольку отсчет удается вести фактически от интенсивности регистрируемого излучения, близкой к нулю, на которую не накладывается возбуждающее излучение. [c.155]


    Применение. К.-материал электродов в хнм. источниках тока компонент катодов-эмиттеров фотоэлементов и термоэмиссионных преобразователей, а также фотоэлектронных умножителей геттер в вакуумных радиолампах активатор катодов газоразрядных устройств. Сплав К. с Na -теплоноситель в ядерных реакторах. Радиоактивный изотоп К служит для определения возраста горных пород (калий-аргоновый метод). Искусств, изотоп К (Tj j 12,52 года)-радиоактивный индикатор в медицине и биологии. [c.285]

    Применение. Используют К. для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света. Радиоактивные изотопы применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. [c.549]

    Источник света, которым являются дейтериевая газоразрядная лампа для длин волн ниже 375 нм и ксеноновая лампа для [c.270]

    Модулированный источник света создается модуляцией приложенного к газоразрядной лампе напряжения или пропусканием [c.274]

    Датчик измерительного устройства выполнен в виде вилки, имеющей два полых стержня на расстоянии 300 мм друг от друга (рис.4.2) в одном установлен источник излучения (ампула с радиоактивным кобальтом, Со-60), в другом газоразрядный счетчик. Излучение, проходя через слой шихты к счетчику, вызывает сигналы, которые после усиления фиксируются пересчетной установкой. [c.110]

    И качестве источника ультрафиолетового и видимого света используют газоразрядные лампы (ртутные лампы низкого, В1.1С0К0Г0, среднего давления, ксеноновые лампы), лампы нака-лпвгшия или лазеры. Для получения монохроматического света служат монохроматические фильтры, выделяющие из излучения источника сложного спектрального состава свет определенной длины волны. Промышленность выпускает твердотельные фильтры (из окрашенного стекла, пластиче-ски> масс) или жидкостные, представляющие собой имеющие цвет растворы. [c.25]

    Метод DIN не отличается принципиально от метода ASTM. Наряду с полым катодом источником излучения в этом методе используют газоразрядную лампу, которая имитирует спектр атомных линий анализируемых элементов. Определение по методу DIN осуществляют пламенным или беспламенным способом. [c.187]

    В настоящее время в качестве источников света для атомно-абсорбционного анализа наиболее часто используют различные газоразрядные источники, спектр испускания которых совпадает со спектром определяемого атома. В этом случае не представляет труда получить в спектре испускания линии с шириной, меньшей ширины спектральных линий определяемых атомов, поскольку атомы, как правило, находятся при высоких температурах, что приводит к уширению их энергетических уровней и соответственно спектральных линий. При работе выбирают в спектре испускания одну из линий, обусловленную переходом на основной уровень (резонансную линию), и определяют ослабление ее интенсивности при прохождении излучения через слой поглощающих атомов. Очевидно, что поглощать данную спектральную линию будут атомы, находящиеся в оснавном состоянии. [c.35]

    В атомно-абсорбционном методе анализа в качестве источников излучения чаще всего применяют специальные газоразрядные лампы с полым катодом. Конструкция ламп такова, что в спектре испускания интенсивно проявляются спектральные линии атомов, входящих в состав материала катода, или веществ, специально помещенных в полость катода. Изменяя материал катода или состав помещаемого в полость катода вещества, можно получать спекхры испускания различных атомов. Обычно каждая лампа для атомно-абсорбционного анализа дает спектр испускания атомов какого-либо одного элемента (табл. 3). Поэтому для определения нескольких элементов в пробе необходимо иметь набор ламп на различные элементы, поскольку лампы, позволяющие определять сразу несколько элементов, пока не нашли широкого применения в практике атомно-абсорбционного анализа. Таким образом, несколько элементов определяют при последовательной замене ламп, используя их поочередно в качестве источников излучения. [c.36]

    Источники излучения. Все используемые в оптической спектроскопии источники излучения являются излучателями непрерывного спектра. Для инфракрасной спектроскопии, а также для спектроскопии в видимой области, используют раскаленные излучатели для ультрафиолетовой спектроскопии — специальные газоразрядные лампы. Распределение интенсивности излучения по спектру для идеального термического излучателя описывается законом Планка для излучения энергии абсолютно черным телом. В широком диапазоне частот интенсивность излучения различна. Особенно мала она в самом конце длинноволновой области после прохождения максимума, ближе к концу коротковолновой области, интенсивность излучения быстро падает. Радиационные свойства излучателя и положение максимума интенсивности определяются температурой, химическим составом и состоянием поверхности этого излучателя. Испольчуемые в ультрафиолетовой области водородная и аейтериевая лампы характеризуются почти равномерным спектральным распределением энергии в интервале частот 33 ООО—50 ООО см ( 300—200 нм) [401. Сведения о наиболее часто используемых излучателях непрерывного спектра приведены в табл. 5.18. [c.235]

    Принциниальпое отличие газоразрядных трубок при пониженном давлении от источников, работающих при атмосферном давлении, — это отсутствие термодинамического равновесия между компонентами плазмы, а отсюда и тазличие между температурой электронов и температурой газа (20—30 тыс. С и 300—400° С). Вследствие высокой температуры электронов в газоразрядных трубках возбуждаются элементы с высокими потенциалами возбуждения — газы (водород, кислород и др.), фосфор, галогены. [c.66]

    В качестве спектральных источников света используются, как правило, лампы с широким спектром излучения. К таким лампам относятся ксеноновые газоразрядные лампы, ксеноново-ртутные лампы, излучающие в видимой и ультрафиолетовой области лампы накаливания, излучающие в видимой области, и лампы накаливания с добавками галогенов, излучающие в видимой и ближней ультрафиолетовой области. Современные ксеноновые лампы (ДКСШ-75, ДКСШ-120), имеющие малый зазор между электродами и большую стабильность дуги, наиболее часто используются в [c.184]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    Луч света от источника возбуждения (например, от лампы накаливания для видимой области спектра, газоразрядной водородной или дейте-риевой лампы для УФ-области) проходит через стеклянную или кварцевую кювету фиксированной толщи1гы, заполненную анализируемым раствором. При этом часть световой энергии, соответствующая длине волны собственного (характеристического) электронного возбуждения анализируемого вещества, селективно поглощается этим веществом, тогда как электромагнитная энергия при других длинах волн не поглощается анализируемым раствором. Свет, прошедший через кювету с раствором, направляется на входную щель спектрофотометра, в котором он разлагается в спектр. Обычно применяемые в аналитической практике спектрофотометры обеспечивают достаточно высокую степень монохроматизации света (-0,2—5 нм) за счет применения специальных диспергирующих элементов — призм и дифракционных решеток. После разложения в спектр электромагнитная энергия спета регистрируется автоматически или по точкам в форме спектральной кривой, записываемой в виде фафика функции интенсивности прошедшего света, выраженной чере i пропускание Т или оптическую плотность А, от длины волны Х либо волнового числа V.  [c.524]

    Применение. Из щелочных металлов наибольшее применение находит натрий. Основными областями его применения является производство металлов и сплавов, например калия, циркония, тантала, сплавов со свин- цом и ртутью. Натрий используется для получения неорганических и органических соединений, например N3202, Na N, NaH. Он служит восстановителем органических соединений, катализатором некоторых реакций, наполнителем газоразрядных натриевых ламп. Натрий в сплаве с калием является теплоносителем (переносчиком теплоты) в ядерных источниках энергии. [c.244]

    Световые лучи достаточной интенсивности, будучи сфсркусированными с помощью системы зеркал или линз, позволяют получить в фокусе весьма высокие температуры. Такого рода оптические печи применяются данно. В качестве источника излучения использовались солнце, электрическая дуга, вольфрамовые нити лампы накаливания, угольные и графитовые нагреватели, газоразрядные лампы высокого давления и плазменные излучатели. В фокусе оптических печей можно получать температуры до 4000 К, поэтому они довольно широко использовались в лабораторных исследованиях. В промышлен-носги из-за сложности и малого КПД они не получили распространения. Положение изменилось с появлением лазеров (оптических квантовых генераторов). [c.380]

    Схема ультрафиолетового Г. аналогична схеме, приведенной на рис. 7. Имеются также приборы с двумя детекторами излучения без модулятора, в к-рых световые потоки не прерываются. В кач-ве источников излучения обычно применяют ртутные лампы низкого (X = 253,7 нм) и высокого (спектр с большим набором линий) давлений, газоразрядные лампы с парами др. металлов (Х = 280, 310 и 360 нм), лампы накаливания с вольфрамовой нитью, водородные и дейтериевые газоразрядные лампы. Приемники излучения-фотоэлементы и фотоумножители. При использовании неселективного источника излучения избирательность измерения в большинстве приборов обеспечивают с помощью оптич. фильтров (стеклянных или интерферен-ц юнных). [c.457]

    Примеиеиие. Используют К. для наполнения ламп 1ыклли-вания, газоразрядных и рентгеновских трубок. Радиоактивный изотоп Кг используют как источник Р-излучсния в медицине, для обнаружения течей в вакуумных устаповхих, как изотопный индикатор при исследованиях коррозии, ия контроля износа деталей. Хранят и транспортируют К и сг о смеси с Хе под давлением 5-10 МПа прн 20°С в герметичных стальных баллонах черного цвета соотв. с одной жел тй полосой и надписью криптон и двумя желтыми полосами н надписью криптон-ксенон . [c.523]

    Примеиеиие. Н. и его сплавы с К-жидкие теплоносители, в частности в ядерных реакторах. Пары Н. используют для наполнения газоразрядных ламп сплавы Pb-Na-B произ-ве РЬ(С2Н5)4, для изготовления подшипников. Н. применяют как модификатор алюминиевых и др. сплавов, восстановитель в металлургии (в произ-ве Ti, Zr, Та), орг. синтезе (как сам И., так и его амальгама), для получения соед. Na, как катализатор в синтезе бутадиенового каучука. Амальгаму Na используют при получении NaOH высокой чистоты изотоп Na-для радиологич. лечения нек-рьк форм лейкемии и в диагностич. целях. Изотоп Na-позитронный источник. [c.179]

    Применеше. Н. и неоно-гелиевую смесь используют в качестве рабочей среды в газовых лазерах, для наполнения газоразрядных источников света, сигнальных ламп ЭВМ и радиотехн. аппаратуры, ламп-индикаторов и стабилизаторов напряжения, как хладагент в технике низких т-р. [c.210]

    Применение. Р. используют для изготовления катодов при электрохим. получении едких щелочей и xjropa, а также для полярографов в произ-ве ртутных вентилей, газоразрядных источников света (люм1шесцеитных и ртутных ламп), диффузионных вакуумных насосов, контрольно-измерит. приборов (термометров, барометров, манометров и др.) для определения чистоты фтора, а такясе его концентрации в газах. [c.279]

    Источник света, использующийся в приборах для спектроскопии КР, должен давать сильное монохроматическое излучение. В связи с этим применяют дуговые ртутные лампы специальной конструкции, испускающие интенсивную синюю линию при 4357 А и сильную зеленую линию при 5461 А. Выбранный возбуждающий свет не должен поглощаться исследуемым образцом и давать флуоресценцию, которая бы маскировала спектр КР или вызывала фотодеструкцйю данного образца. Иногда поэтому при исследовании светочувствительных веществ предпочитают применять гелиевые газоразрядные лампы, которые дают интенсивные линии при 5876 и 6678 А. [c.289]

    Источники возбуждения дуга гостоянного тока — 1, 2, 4—18, 23 газоразрядная трубка с полым катодом — 3, 24 дуга переменного тока — 19—22. [c.162]


Библиография для Источники газоразрядные: [c.210]   
Смотреть страницы где упоминается термин Источники газоразрядные: [c.227]    [c.267]    [c.184]    [c.142]    [c.250]    [c.283]    [c.191]    [c.491]    [c.512]    [c.82]    [c.613]   
Электроника (1954) -- [ c.445 , c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Газоразрядные источники УФ-излучения

Ионный газоразрядный источник

Ионный газоразрядный источник в масс-спектрометре

Источники света газоразрядные



© 2024 chem21.info Реклама на сайте