Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ширина спектральных линий

    Рост интенсивности сопровождается увеличением ширины спектральной линии. Ширина спектральной линии определяется также рядом факторов — естественное уширение допплеровское уширение, связанное с учетом движения атома уширение вследствие влияния электрического поля (эффект Штарка) и вследствие влияния магнитного поля (эффект Зеемана). На ширину линии влияет концентрация атомов на нижнем уровне и характеристика прибора (аппаратурная ширина). [c.11]


    В СССР серийно выпускаются высокочастотные безэлектродные шариковые лампы ВСБ-2. Основные характеристики ламп приведены в табл. 6 Приложения 4. Ширина спектральных линий в рабочих режимах не более 0,005 им. Следует отметить, что параметры лампы стабилизируются после входа лампы в режим. Так, для шариковых ламп ВСБ-2 с ВЧ-возбуждением требуется предварительный прогрев в течение 10 мин. В условиях термостабилизации и правильного выбора режима генератора для лучших образцов ламп ВСБ-2 нестабильность излучения не превышает 1%. [c.147]

    Установку ширины щели надо производить как можно точнее, особенно в тех случаях, когда спектральная ширина щели меньше, чем ширина спектральной линии. [c.110]

    Построение градуировочного графика. Подготовку стилометра СТ-7, генератора ИГ-3, электродов, а также установку электродов проводят как указано в работе 1. Включают разряд конденсированной искры напряжение 220 В, емкость 0,005 мкФ, индуктивность 0,55 мкГ, сила тока питания трансформатора 1,0 А (сложная схема). При использовании высокочастотной искры — межэлектродный промежуток 1,0 мм, сила тока питания трансформатора 0,6 А. Устанавливают ширину щели стилометра 0,08 мм. Проверяют полноту освещенности поля зрения окуляра, корректируют резкость спектра и находят спектральные линии гомологической пары. Устанавливают спектральную линию магния внутри рамки, у ее левого края (рис. 1.6,а), перемещая спектр микрометрическим винтом призмы. Рамка при этом, как и спектр, должна быть полностью освещена и находиться в исходном положении. Затем рамку с линией сравнения перемещают влево к линии меди так, чтобы между ними оставалось расстояние в 2—3 ширины спектральной линии (рис. 1.6,6). На месте рамки остается темный вырез. [c.24]

    Эту систему тщательно не исследовали. Низкоспиновые комплексы диамагнитны, а высокоспиновые комплексы с симметрией 0 напоминают / -комплексы. Высокоспиновый комплекс железа(П) при 4,2 К характеризуется д-фактором 3,49 и шириной спектральной линии 500 Э. Спин-орбитальное взаимодействие в основном состоянии велико, имеются в комплексе и близко лежащие возбужденные состояния, которые могут к нему подмешиваться. Если эффекты нулевого поля малы, то в основном состоянии с J = I должны наблюдаться два перехода. В искаженном октаэдрическом поле эффекты нулевого поля велики, и спектр ЭПР комплекса не регистрируется. Примером такой системы может служить дезоксигемоглобин. [c.243]


    Быстрые химические процессы влияют на ширину спектральных линий и их существование, как и в ЯМР. Резонансные линии, разделенные [c.48]

    Отсюда ясно, что при рассмотрении формы и ширины спектральной линии поглощения необходимо тщательно анализировать возможные причины, приводящие к искажению экспериментальных спектров. При проведении прецизионных измерений ширины линии необходимо учитывать угловое распределение у-квантов в падающем на поглотитель пучке, так как излучение в этом случае распространяется в виде конуса. Перечислим еще несколько явлений, которые могут искажать форму мессбауэровского спектра поглощения. В поликристаллических образцах возможна ани- [c.192]

    Поэтому при бесконечно узкой входной щели и строго монохроматическом излучении, падающем на нее, в фокальной плоскости получаются линии конечной ширины, которые имеют свой контур. Функция, описывающая этот контур, называется аппаратной функцией прибора, или инструментальным контуром, а ширина этой функции на половине ее высоты называется шириной аппаратной функции, т. е. это ширина спектральной линии, меньше которой не может быть получена с помощью данного прибора строго монохроматическая линия при бесконечно узкой щели. [c.20]

    Поскольку ширина спектральных линий, соответствующих электронным переходам в атомах, относительно мала (- 10-2 д ), необходимо применять спектральную аппаратуру, позволяющую выделять из сплошного спектра монохроматические составляющие с ширинами, равными (меньшими) ширинам атомных спектральных линий. Такая аппаратура хотя и вполне доступна, но относительно громоздка и, кроме того, обладает малой светосилой, что затрудняет регистрацию слабых сигналов. Поэтому атомно-абсорбционный метод анализа с применением источников излучения сплошного спектра не нашел широкого распространения. [c.35]

    Времена жизни возбужденных электронных состояний в атоме имеют порядок 10 —10 с. Отсюда можно рассчитать, что ширина возбужденного уровня будет равна - 10 с К Это значит, что ширина спектральной линии, обусловленной переходом атома с данного электронно-возбужденного уровня на основной будет также равна 10 с . [c.14]

    Химики нередко рассматривают физическое свойство как достояние одной молекулы, - точнее, молекулярной структуры. В действительности речь всегда идет о свойствах огромного множества молекул, с чем приходится считаться, поскольку нередко многие детали физических свойств (ширина спектральных линий, время жизни тех или иных состояний и т. п.) зависят от условий среды, межмолекулярных отношений, характера растворителя, концентрации вещества, температуры. [c.24]

    Какие факторы определяют ширину спектральной линии (естественные и аппаратурные)  [c.37]

    Вследствие релаксационных процессов время жизни ядра в возбужденном состоянии ограничено, а, согласно принципу неопределенности, ограничение времени жизни А/ расширит ядерные магнитные уровни энергии, т. е. увеличит ширину Дv линии ЯМР (A Дv 1). Поэтому при малых значениях Ту (10 —10 с) ширина спектральной линии Av составит около 10 кГц и можно считать, что это область низкого разрешения. В мало вязких жидкостях время релаксации обычно-равно 1—10 с, в связи с чем ширина линий составляет доли герца. В данном случае можно говорить о высоком разрешении. [c.51]

    Очевидно, что для выделения с помощью монохроматора из непрерывного спектра источника излучения спектрального интервала, равного по ширине спектральной линии поглощения в атоме, необходимо, чтобы монохроматор имел реальную разрешающую способность Я = к/АХ, где X — длина волны, соответствующая центру спектральной линии, а АЯ — ее полуширина. [c.132]

    Кроме миллиметровой шкалы микрофотометр снабжен логарифмической щкалой, изображение которой получают на экране 7 поворотом зеркала 14. Логарифмическая щкала микрофотометра получена путем нанесения против соответствующих делений микрометрической щка-лы вычисленных значений почернений, умноженных на 100, т. е. 100 5. Например, если отклонение по логарифмической шкале составляет 84, то почернение пластинки 5 = 0,84. Фотопластинка расположена на столике микрофотометра так, чтобы изображения спектральных линий на экране 8 были параллельны щели на этом экране. Смещая пластинку в направлении, перпендикулярном спектральным линиям, достигают того, что изображение спектральной линии совпадает с щелью. Ширина щели не должна превышать ширины спектральной линии. [c.234]

    Погрешность определения волновых чисел или длин волн. Если шкала прибора калибрована в делениях волновых чисел или длин волн, то в паспорте прибора обычно указана погрешность измерения данных величин. Для призменных приборов погрешность измерения волновых чисел — величина переменная н зависит от волнового числа. Если же нет указаний на точность измерения волнового числа, то принимается за точность минимальный отсчет по шкале. Если шкала прибора не калибрована, то при определении каждого отсчета в спектре стандартного вещества, по которому производится калибрование шкалы, допускается пог1)ешность. Значения волновых чисел или длин волн в спектре стандартного вещества принимаются за точные. Погрешности зависят от ширины спектральных линий или полос поглощения и от других факторов. [c.67]


    Определите, насколько полно использована теоретическая разрешающая способность двухпризменного спектрального аппарата, если наиболее близкие разрешенные линии в спектре железа 4154,8 и 4154,5 А. Действующее отверстие прибора 30 мм, а угловая дисперсия каждой призмы в этой области 2,8-10 рад/к. Найдите дифракционную ширину спектральных линий и расстояние между ними в фокальной поверхности, если фокусное расстояние объектива камеры 600 мм. [c.111]

    Для спектральной линии с частотой Ю с , чем соответствует длина волны Х=300 нм, мы получим, что Лv/v= 10/10 = 10 . Отсюда очевидно, что ширина спектральных линий, обусловленная только конечными временами комбинирующих состояний, чрезвычайно мала по сравнению с их абсолютными значениями частот в видимой и ультрафиолетовой областях спектра. Вследствие это- [c.14]

    Ширина и форма спектральной линии. Простые уровни, которые составляют один сложный уровень, слегка различаются по энергии. Поэтому большинство спектральных линий состоит из нескольких слившихся линий и имеет некоторую ширину. Кроме того, многие элементы являются смесью изотопов с разной массой атомов. Это приводит к увеличению ширины спектральных линий, которая может быть больше 0,1 А. [c.54]

    Увеличение разрешающей способности приборов позволяет работать со все более сложными спектрами. Где же лежит предел повышения разрешающей способности приборов Практически она обычно ограничена их размерами и стоимостью. Теоретический предел разрешения дает ширина спектральных линий, определяемая источником света и собственной шириной линии, которую до сих пор не учитывали, считая, что она значительно меньше геометрической и дифракционной ширины. Если разность длин волн двух линий, излучаемых источником света, меньше, чем ширина каждой из них, то добиться разрешения нельзя ни при каких параметрах спектрального аппарата. [c.107]

    Активными центрами газовых лазеров являются атомы и ионы в газовой фазе. Области генерации достаточно узкие, как правило, не превышающие ширины спектральных линий, возникающих при электронных переходах в атомах и ионах. В последнее время широкое применение находят лазеры, в которых активными центрами являются молекулы, т. е. лазерное излучение возникает при электронных переходах в молекулах (говорят на молекулярных переходах ). Области генерации молекулярных лазеров несколько шире, чем лазеров на атомных переходах, так как генерация происходит одновременно в нескольких возбужденных вращательных уровнях (иногда и электронно-колебательно-вращательных). Мощности генерации меньше, чем у твердотельных лазеров, [c.192]

    Теоретическое разрешение, возможное в экспфименте УФС, где определяются энергии связывания валентных электронов, обсуждалось Тернером [31]. Напомним, что измерения проводятся в газовой фазе. Разрешение в спектре УФС ограничивается скоростью движения молекулы-мишени в сочетании со скоростью движения фотоэлектрона (фактически это явление аналогично доплеровскому уширению) величиной эВ. Если вместо камеры, заполненной газообразным веществом, использовать пучок молекул-мишеней, то можно достичь разрешения 10 эВ. В случае пучка распределение молекулярных скоростей относительно источника более однородно. Вклад в ширину спектральных линий УФС за счет времени жизни возбужденного состояния [c.334]

    Персия и увеличение спектрального аппарата остаются прежними. Количество света, попавшего в прибор (линейчатого и сплошного), уменьшилось в 4 раза за счет уменьшения относительного отверстия коллиматора. Кроме того, освещенность сплошного спектра уменьшилась еще в 2 раза, так как его длина возросла угловая ширина спектра та же, но фокусное расстояние объектива камеры увеличилось вдвое. Если ширина спектральной линии определялась ее геометрической шириной, то ее размеры останутся неизменными и интенсивность линий по сравнению со сплошным спектром увеличится в два раза. При работе с нормальной щелью ширина линии зависит от дифракции и увеличивается при увеличении фокусного расстояния объектива камеры. Выигрыша в чувствительности в этом случае получить нельзя. [c.109]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (IX. 15), то ширина линии была бесконечно малой. Однако энергия уровня не есть точно зафиксированная величина. Неопределенность в энергии уровня б связана со временем жизни частицы Дт на соответствующем уровне соотношением неопределенностей б Ат й, где Дт определяется величинами Г] и Т . Ширина линии определяется величиной ЬЕ (рис. 80), и она тем больше, чем меньше Дт. Таким образом, малые времена жизни возбужденного состояния приводят к уширению спектра. С другой стороны, очень большие времена жизни также вызывают уширение спектра вследствие насыщения. [c.235]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Одной из причин того, [c.96]

    Таким образом, для сравнительно мягких 7-лучей с энергией 129 кэВ сдвиг линий испускания и поглощения оказывается того же порядка, что и ширина спектральных линий. С увеличением энергии фотона ед растет быстрей (как (о ), чем О (которая пропорциональна (О1), и величина сдвига может превзойти ширину спектральной линии 20. [c.394]

    Оптич. накачку осуществляют чаще всего с помощью газоразрядных ламп в импульсном или непрерывном режимах работы. Поскольку их излучение имеет широкий спектр, в качестве активной среды необходимо применять материалы с широкими полосами поглощения. Однако с ростом ширины спектральной линии уменьшается сечение а и потому трудно достичь пороговых значений АЫ , согласно (I). Задачу решают для разл. активных сред по-разному. Рассмотрим, напр., схему накачки рубинового Л., в к-ром для создания инверсной населенности используют Энергетич. уровни иона Сг , внедренного в решетку [c.562]

    Две щели необходимы по следующей причине. Входная щель ограничивает угол в горизонтальной плоскости, в пределах которого распространяется свет, попадающий в монохроматор. Она выступает в роли линейного источника, подобно щели эмиссионного спектрографа. Хорошо известно, что для спектрографа, дающего стигматическое изображение, спектральные линии имеют такую же форму, как и щель. Уменьшение ширины щели приводит к уменьшению ширины спектральных линий (вплоть до дифракционного предела Рэлея). [c.26]

    Как указывалось ранее, естественная гиирина линии в спектрах ЯМР обратно пропорциональна времени спин-спи-новой и спин-решеточной релаксации. У твердых тел время спин-спиновой релаксации очень мало, поэтому их спектры ЯМР состоят из широких линий ( 10 Гц), и потому мало пригодны для исследования органических соединений, у которых расстояние между спектральными линиями может составлять всего лишь несколько герц. В невязких жидкостях и газах и Tj имеют порядок нескольких секунд, что соответствует естественной ширине спектральной линии, равной десятым долям герца. И в этом случае решающим фактором, определяющим наблюдаемую форму спектральной кривой (в частности, ее полуширину), может стать разрешающая способность (разрешение) прибора. Например, если прибор с рабочей частотой 80 МГц имеет разрешение 5 10 , то это значит, что полуширина спектральных линий, полученных с помощью этого спектрометра, не будет меньше 0,4 Гц(8 10 X 5 10 ). [c.33]

    Микроволновый спектрометр состоят из источника излучения (чаще всего клистрона), ячейки с исследуемым в-вом (или ииогда объемного резонатора), детектора (полупроводникового или болометра) и устройства, позволяющего модулировать частоты спектральных линий внешним электрическим Штарка эффект) или магн. полем Зеелиша эффект). Ширина спектральной линии обусловлена гл. обр. эффектом Доплера и соударениями молекул. Чтобы уменьшить роль соударений, эксперимент проводят при низкнх т-рах (200 К) и давлениях газа ( 0,13 Па, 10 мм рт.ст.) или используют мол. пучки, в к-рых практически отсутствуют соударения молекул. Это обусловливает высокую разрешающую способность метода (<в/Аш я 10 -10 ). Погрешности определения частот о, а следовательно, и крайне малы (АВд 10 см , 10 нм), что позволяет установить геом. параметры двухатомных молекул с наивысшей точностью по сравнению с др. методами иосле-дования структуры (в частности, дифракционными). [c.83]

    Процессы электронного спинового обмена весьма распространены в свободнорадикальных системах, и они решающим образом влияют на ширину спектральных линий и характер спектра. В жидкофазных системах это чаще всего бимолекулярные столкновения, в ходе которых два радикала обмениваются электронами. Наблюдаемая при этом картина аналогична описанной лри обсуждении спектров Я Р. На рис. 9.25 показаны спектры ЭПР растворов с различной концентрацией нитроокиси ди-треш-бутила [( Hjjj jjNO. В качестве растворителя использовался N,N-димeтилфopмaмид. По мере увеличения концентрации (А -> В) скорость бимолекулярного процесса увеличивается и линии уширяются. Константа скорости этого процесса составляет 710 л/моль-с это говорит о том, что скорость процесса лимитируется диффузией. По мере того как раствор, чей спектр показан на рис. 9.253, становится значитель- [c.48]

    В настоящее время в качестве источников света для атомно-абсорбционного анализа наиболее часто используют различные газоразрядные источники, спектр испускания которых совпадает со спектром определяемого атома. В этом случае не представляет труда получить в спектре испускания линии с шириной, меньшей ширины спектральных линий определяемых атомов, поскольку атомы, как правило, находятся при высоких температурах, что приводит к уширению их энергетических уровней и соответственно спектральных линий. При работе выбирают в спектре испускания одну из линий, обусловленную переходом на основной уровень (резонансную линию), и определяют ослабление ее интенсивности при прохождении излучения через слой поглощающих атомов. Очевидно, что поглощать данную спектральную линию будут атомы, находящиеся в оснавном состоянии. [c.35]

    Если ширина спектральной линии обусловлена только конечным временем жизни комбинирующих состояний, то она называется естественной шириной. Контур такой линии опсывается следующей формулой  [c.15]

    РАДИОПРОЗРАЧНЫЕ МАТЕРИАЛЫ, см. Радиопоглощающие и радиопрозрачные материалы. РАДИОСПЕКТРОСКОПИЯ, методы исследования состава, строения, реакц. способности и др. св-в в-в, основанные на изучении спектров электромагн. излучения в диапазоне )адиоволн от 5 10 до Ю м (частоты от 6 - Ш до неск. ц). Благодаря малой энергии квантов и малой естеств. ширине спектральной линии в диапазоне радиоволн можно получить высокое разрешение спектра, а его параметры (положение, интенсивность, ширину и фор.му линий) определить с большой точностью. Это позволяет регистрировать резонансное поглощение или испускание электромагн. энергии, возникающее вследствие очень небольших расщеплений энергетич. уровней, к-рые невозможно обнаружить с помощью др. спектроскопич. методов. [c.171]

    В тех случаях, когда ширина спектральных линий в фокальной поверхности прибора определяется только шириной самой линии (5д>5д и л>5г), любое изменение параметров спектрального аппарата не может привести к увеличению ни чувствительности, ни разрешающей способности. Это условие позволяет найти ту наибольшую чувствительность и разрешающую способность, которую можно получить, используя наиболее хороший спектральный аппарат, при работе с данным источником света, от которого зависит ширина линий. Если при работе, как это обычно имеет место, или5г>5д, то это озна- [c.110]

    Ширина спектральной линии, определяемая временем жизни возбужденного состояния. Если бы строго выполнялось уравнение (1.15), ширина линии была бы бесконечно малой. Однако энергия уровня не фиксирована точно. Неопределенность в энергии уровня бЕ связана со временем жизни частицы Ат на соответствующем уровне соотношением неопределенностей бЕАх а, где Ат определяется величинами и 7г. Как видно из рис. 1.3, ширина спектральной линии определяется величиной б , и она тем больше, чем меньше Ат. Таким. образом, малое время жизни возбужденного состояния приводит к уширению спектра. С другой стороны, очень большое время жизни вызывает уширение спектра вследствие насыщения. [c.21]

    Вторая особенность современных ЭПР-спектромёТ ров заключается в том, что в них используется высокочастотная (чаще всего 100 кГц) модуляция магнитного поля с амплитудой ДЯ , существенно меньшей, чем ширина спектральной линии (рис. 1.19). Видно, что выходной сигнал также модулирован с частотой модуляции, а амплитуда его пропорциональна величине первой производной кривой поглощения. После детектирования и усиления регистрируется первая производная кривой поглощения. Так как используется узкополосный усилитель на частоте модуляции, щумы с частотами, заметно отличающимися от частоты модуляции, не усиливаются и отношение сигнал/шум увеличивается. [c.49]


Смотреть страницы где упоминается термин Ширина спектральных линий: [c.561]    [c.29]    [c.29]    [c.13]    [c.14]    [c.15]    [c.21]    [c.55]    [c.145]    [c.400]   
Смотреть главы в:

Техника и практика спектроскопии -> Ширина спектральных линий

Атомно-абсорбционная спектроскопия -> Ширина спектральных линий

Основы спектрального анализа -> Ширина спектральных линий

Техника и практика спектроскопии -> Ширина спектральных линий

Оптические спектры атомов -> Ширина спектральных линий


Техника и практика спектроскопии (1976) -- [ c.17 , c.18 , c.261 ]

Электрические явления в газах и вакууме (1950) -- [ c.36 , c.330 , c.360 ]

Техника и практика спектроскопии (1972) -- [ c.17 , c.18 , c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Ширины линий



© 2025 chem21.info Реклама на сайте