Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индукция и репрессия синтеза ферментов

    Индукция и репрессия синтеза ферментов [c.14]

    Механизм, регулирующий синтез ферментов, называется репрессией. Это — подавление синтеза их под влиянием избыточно- го количества продукта реакции, который, накопившись в системе и действуя в цепи отрицательной обратной связи, служит сигналом о прекращении синтеза ферментов, которые теперь клетке не нужны. Во многих случаях регуляция может осуществляться и по принципу положительной обратной связи, т. е. клетка реагирует на сигналы, не только тормозящие, но и наоборот, стимулирующие образование требуемого набора ферментов. В частности, это происходит тогда, когда в среде появляются компоненты, которые клетка должна разрушить до соединений, нужных для ее роста. В подобных случаях раньше говорили об адаптации или образовании адаптивных ферментов. Усиление биосинтеза ферментов иначе называют индукцией. [c.89]


    Кроме этого в бактериальных клетках имеются ферменты, количества которых могут резко меняться в зависимости от состава питательных веществ среды. Это происходит в результате того, что гены, детерминирующие эти ферменты, включаются или выключаются по мере надобности. Их называют индуцибельны-м и. При отсутствии в среде субстратов этих ферментов последние содержатся в клетке в следовых количествах. Если в среду добавить вещество, служащее субстратом определенного фермента, происходит быстрый синтез этого фермента в клетке, т.е. имеет место индукция синтеза фермента. Если же в питательной среде в готовом виде содержится вещество, являющееся конечным продуктом какого-либо биосинтетического пути, происходит быстрое прекращение синтеза ферментов этого пути. Это явление получило название репрессии конечным продуктом. Ферменты, синтез которых подавляется конечным продуктом, могут быть дерепрессированы, т. е. скорость их синтеза превысит обычную, если концентрация конечного продукта упадет до очень низкого уровня. Дерепрессия этих ферментов аналогична явлению индукции. [c.118]

    Биосинтез белка — процесс, который поддается регулированию. Принципы такой регуляции впервые были сформулированы в работах Жакоба и Моно Рассматривая хорошо изученные явления репрессии и индукции синтеза ферментов, они пришли к выводу, что эффект индукции, т. е. ускорение синтеза, вызывается специфическим химическим соединением, чаще всего субстратом или аналогом субстрата, а эффект репрессии, т. е. подавление синтеза фермента, — продуктом реакции, катализируемой этим ферментом или аналогом этого продукта. Один и тот же метаболит или субстрат могут вызвать или затормозить синтез сразу нескольких белков. В таком случае всегда оказывается, что белки-фермеиты действуют в метаболической цепи последовательно. Отмечено, что действие подобных факторов не зависит от структуры синтезируемых белков. Зато некоторые мутации, затрагивающие одиночный нуклеотид ДНК, полностью выключают способность клетки к репрессии синтеза определенных ферментов. С учетом этих данных Жакоб и Моно предложили схему регуляции биосинтеза белка (рис. 68). Согласно этой схеме, субстрат и продукт реакции, накапливаясь в клетке, действуют на особое вещество — репрессор в двух противоположных направлениях субстрат, соединяясь [c.490]

    Примечание. , - аллостерическая активация, ингибирование 1>, О - индукция, репрессия синтеза ферментов. [c.382]

Рис. 156. Схемы индукции (А) и репрессии (Б) синтеза фермента (Р — промотор О — оператор) Рис. 156. Схемы индукции (А) и репрессии (Б) <a href="/info/32930">синтеза фермента</a> (Р — промотор О — оператор)

    Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к выключению или включению генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными (см. далее). У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления—индукция и репрессия—взаимосвязаны. [c.535]

    Чтобы лучше понять современные представления о репрессии и индукции синтеза ферментов, необходимо сначала рассмотреть, как происходит соединение аминокислот в определенной последовательности при образовании молекулы белка. В последние годы этот вопрос многократно описывался в литературе с самых различных точек зрения. Поэтому мы коснемся его очень кратко, а для общего ознакомления рекомендуем читателю книгу Дж. Д. Уотсона Молекулярная биология гена [43]. [c.69]

    Регуляция синтеза ферментов. В живых клетках на уровне генетического аппарата запрограммировано относительное постоянство количества белков, в том числе так называемых конституционных ферментов. Однако при изменении питания, длительном голодании, спортивных тренировках количество отдельных белков изменяется. Существует адаптивный контроль биосинтеза белка на уровне отдельных генов, вызывающий индукцию (усиление) или репрессию (уменьшение) скорости синтеза РНК. Индукторами или репрессорами могут быть субстраты ферментов либо продукты данной реакции. Индукция синтеза определенного фермента приводит к его накоплению при увеличении концентрации его субстрата либо при необходимости усиления скорости его обмена. Репрессия происходит в случаях, когда отсутствует субстрат и фермент уже не нужен или когда клетка экономит свои энергетические ресурсы. [c.271]

    Понятие ферментная система находит свое выражение также на уровне генетического аппарата клетки. Согласно современным представлениям специфическая структура каждого белка-фермента определяется (детерминируется) отдельным геном, т. е. специфической молекулярной структурой ДНК в соответствующем участке хромосомы. В настоящее время существует стройная система представлений о механизме регуляции синтеза ферментов в клетках, созданная на основании изучения явлений индукции и репрессии и представлений о механизме белкового синтеза. [c.159]

    Этап функционирования ферментов 6 может оказаться рост-лимитирующим звеном метаболизма лишь при отсутствии в клетке необходимого количества фермента (либо у дефектных мутантов, у которых фермент малоактивен, хотя и синтезируется в большом количестве). В первом случае обычно включается механизм индукции синтеза фермента субстратом или происходит снятие репрессии, оказываемой конечным продуктом. Для конструктивных ферментов возможна также стимуляция на уровне трансляции. Только при недостаточной эффективности всех этих механизмов регуляции количество фермента может оказаться неадекватным условиям роста. [c.72]

    Основные механизмы, регулирующие катаболические пути, — индукция синтеза ферментов и катаболитная репрессия. Катаболические пути, в которых функционируют конститутивные ферменты, регулируются большей частью посредством аллостерических воздействий на активность ферментов. Одна из задач катаболических путей — обеспечение клетки энергией. У большинства прокариот возможности генерации энергии намного превышают потребности в ней клетки. Количество АТФ, которое можно синтезировать с помощью имеющихся в клетках аэробных прокариот ферментов гликолитического и дыхательного путей, значительно больше количества АТФ, необходимого для процессов биосинтеза и поддержания жизнедеятельности. Поэтому клетки должны обладать способностью контролировать потребление энергодающих субстратов и, следовательно, выработку клеточной энергии. Основной принцип контроля прост АТФ синтезируется только тогда, когда он необходим. Иными словами, интенсивность энергетических процессов у прокариот регулируется внутриклеточным содержанием АТФ. [c.123]

    Согласно теории французских ученых — генетика Ф. Жакоба и биохимика Ж. Моно, соединения, которые индуцируют или репрессируют синтез того или иного фермента,- влияют на структурные гены путем двойной генетической детерминации. Структурные гены определяют молекулярное строение белков. Наряду с группой структурных генов в полинуклеотидной цепочке расположен так называемый ген-оператор, или оперой, — единица генетической регуляции. О п ер о н — группа генов, определяющих синтез группы функционально связанных ферментов. Оперон контролирует, т. е. включает и выключает, тот или иной структурный ген, от которого зависит синтез соответствующего фермента. Рядом с геном-оператором находится промотор, с которым связывается фермент ДНК-зависимая РНК-полимераза, синтезирующая матричную РНК, кодирующая синтез ферментов А и Б. Работа гена-оператора, в свою очередь, зависит от вещества, которое называется репрессором. Репрессор, по-видимому, имеет белковую природу и образуется под влиянием гена-регулятора. Репрессор может взаимодействовать с соединениями, индуцирующими синтез данного фермента (явление индукции), а также с соединениями, которые репрессируют его образование (явление репрессии). [c.477]


    Приведенные выще примеры иллюстрируют репрессию конечным продуктом по принципу обратной связи, характерную для процессов биосинтеза в бактериях. Сходное явление—катаболитная репрессия— состоит в том, что одно из промежуточных соединений в цепочке катаболических ферментативных реакций репрессирует синтез катаболических ферментов. Оно было впервые обнаружено при изучении культуры Е. соИ, растущей на среде, которая содержит в качестве источника углерода не глюкозу, а другое соединение (X). Добавление глюкозы репрессировало синтез ферментов, участвующих в катаболизме X. Это явление вначале называли эффект глюкозы , но потом обнаружилось, что сходные эффекты могут вызывать и другие окисляемые питательные вещества поэтому был предложен термин катаболитная репрессия . Катаболитная репрессия осуществляется при участии сАМР. Молекулярные механизмы индукции, репрессии и дерепрессии осуждаются в гл. 41. [c.101]

    Несколько позже, чем явление индукции, было открыто подавление, или репрессия, синтеза ферментов при добавлении к культурам бактерий определенных метаболитов. Если к среде добавить валин в сравнительно высокой концентрации, то прекращается образование ферментов, участвующих в биосин- [c.237]

    В основе индукции синтеза ферментов лактозного оперона л ежит механизм негативной регуляции исходно репрессор запрещает транскрипцию генов лактозного оперона индукция. заключается в инактиви-ровании репрессора аллостерическим эф,фектором —индуктором. Таким образом, И В случае индукции путем негативной регуляции, и в случае репрессии синтеза ферментов взаимодействие репрессора с оператором лр.иводит к подавлению процесса транскрипции соответствующих структурных генов. Различие заключается в том, что при индукции путем негативной. регуляции эффектор (индукто р), взаимодействуя с репрессором, понижает сродство последнего к оператору, а в случае репрессии эффектор (корепрессор) пО(В ы.шает это сродство. [c.121]

    В биохимических системах эти механизмы дублируются, за-параллеливаются более инерционными механизмами. Таковы, например, репрессия синтеза ферментов Е, . .., Еп конечными продуктами (обратная связь) и индукция синтеза этих ферментов ИСХОДНЫМ субстратом 5о. [c.23]

    Конечно, только индукцией и репрессией синтеза ферментов не исчерпывается регуляция обмена веществ на уровне генетического аппарата клетки. Как репликация самой ДНК, так и синтез на ней в качестве матрицы разнообразных РНК, в том числе и мРНК, что, в значительной мере, предопределяет ход обмена веществ в клетке, зависит от множества других событий. Среди них—метилирование ДНК фосфорилирование и ацетилирование гистонов и негистоновых белков, входящих в состав хроматина взаимодействие с хроматином гормон-рецепторных комплексов аденилирование белков, участвующих в деятельности репликационного аппарата и др. Все они связаны с изменением метаболической активности генома, регуляцией его функций в целом. [c.477]

    Каждое из множества разнообразных веществ создается в клетке в строго необходимых для роста пропорциях в результате фер-ментативньк реакций. Координация химических превращений, обеспечивающая экономность метаболизма, осуществляется у микроорганизмов тремя основными механизмами регуляцией активности ферментов, в том числе путем ретроингибирования регуляцией объема синтеза ферментов (индукция и репрессия биосинтеза ферментов) катаболитной репрессией. [c.34]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    Действительное количество фермента, присутствующего в любой данный момент времени, определяется относительными скоростями его синтеза и распада, а также концентрациями различного рода ингибиторов и активаторов. Как правило, распад ферментов протекает медленно и не известно ни одного специального примера, когда содержание фермента регулировалось бы его распадом. В то же время показано, что существует высокоспецифичная регуляция синтеза ферментов, осуществляемая за счет гормональных механизмов, механизма репрессии и дерепрессии (индукции), а также других пока еще недостаточно изученных процессов. Такая регуляция синтеза ферментов мол ет быть абсолютно по спе ,ифичности, но осуществляется она медленно. У бактерий для значительных изменений содержан 1я фермента таким путем необходимы минуты, а у высших растений— часы. [c.16]

    Третий уровень регуляции —генетический контроль, определяющий скорость синтеза ферментов. Скорость метаболического процесса зависит от концентрации активной формы каждого фермента, а она определяется соотношением скоростей синтеза и распада фермента. Скорость синтеза фермента сильно варьирует в зависимости от условий. Ферменты, которые всегда присутствуют в клетке в более или менее постоянных количествах, называются конститутивными. Ферменты, синтезирующиеся в ответ на появление в среде соответствующего субстрата, называются адаптивными, или индуцибельными. Гены, контролирующие синтез адаптивных ферментов, обычно находятся в состоянии репрессии и дерепреСсируются только при наличии индуктора. Иногда происходит репрессия или индукция одновременно целой группы, ферментов, что связано с закодированием этой группы ферментов в ДНК набором последовательно расположенных генов — опероном. Все гены, входящие в состав данного оперона, репрессируются и дерепрессируются одновременно, или координированно. [c.124]

    Спустя много лет после того, как была открыта положительная ферментативная адаптация, т. е. индукция синтеза фермента в присутствии субстрата (или структурного аналога субстрата), выяснилось, что существует также отрицательная ферментативная адаптация, или репрессия ферментов. В этом случае синтез фермента, вместо того чтобы индуцироваться субстратом, угнетается в присутствии продукта реакции, которую он катализирует. Существование репрессии ферментов было впервые установлено в лаборатории Моно в 1953 г., когда было показано, что синтез трипто-фан-синтазы Е. oli — фермента, определяемого генами irpA и irpB, — подавляется в присутствии триптофана. Биологический смысл этого явления так же очевиден, как в случае индукции р-галактозидазы лактозой для клетки было бы чрезвычайно неэкономно синтезировать ферменты, обеспечивающие последний этап биосинтеза триптофана, в то время когда эта аминокислота в достаточном количестве имеется в окружающей среде. В течение последующих нескольких лет было обнаружено много других случаев репрессии ферментов — в основном ферментов, осуществляющих у бактерий синтез аминокислот и гидролиз фосфорилированных органических соединений. [c.486]

    Первые исследования механизма генетического контроля были посвящены синтезу -галактозидазы, осуществляющей гидролиз дисахарида лактозы до моносахаридов глюкозы и галактозы в клетке Е. соИ. Опыты привели к открытию белка-репрессора лактозного оперона, включающего транскрипцию структурных генов (в данном случае, гена -галактозидазы, а также пермеазы и галактозид-транс-ацетилазы). Это достигается путем связывания репрессора с операторным участком ДНК длиной в 21 нуклеотид, перекрывающимся с последовательностью промотора. В результате блокируется доступ РНК-полимеразы к ее участку связывания и транскрипция цистронов делается невозможной. Для индукции и репрессии синтеза белка, т.е. изменения скорости процесса в противоположных направлениях, необходимо наличие в модели регуляторного механизма еще одного элемента индуктора, который должен, с одной стороны, контролировать действия белка-репрессора лактозного оперона, а с другой -быть связанным прямо или косвенно с функцией синтезируемого фермента. Такой индуктор действительно был обнаружен, и им оказался субстрат -галактозидазы лактоза, точнее, аллолактоза, близкая по строению и образующаяся в присутствии лактозы. [c.118]

    Следовательно, синтез ферментов в клетке регулируется меха-иизмами индукции и репрессии. Логично было предположить, что индукция и репрессия синтеза белков, как и любые другие процессы клеточного метаболизма, находятся под контролем геиов. Это. подтверждалось данными изучения у бактерий некоторых биохимических мутаций. Были обнаружены мутации, нарушающие меха- низм индукции или репрессии. Например, может произойти мутация, в результате которой клетка начинает непрерывно синтезировать фермент независимо от присутствия или отсутствия индуктора. Были обнаружены мутантные штаммы кишечной палочки, которые синтезировали фермент галактозидазу как в присутствии, так и в отсутствие его индуктора — молочного сахара лактозы. Аналогично этому мутация может вывести синтез фермента из-под контроля репрессора. При этом клетка будет продолжать иро-J Iзвoдить фермент и тогда, когда в нем нет надобности и продукт деятельности этого фермента имеется в избытке. Особенность nail 58 [c.158]

    Большую роль в регуляции транскрипции играет так называемая катаболитная репрессия (старое название глюкозный эффект ), которая проявляется в диауксии в процессе роста бактерий. Феномен диауксии обнаруживается, когда в среде присутствуют два субстрата (например, лактоза и глюкоза), причем ферменты, осуществляющие катаболизм одного из них (лактозы), индуцибельны, а ферменты, осуществляющие катаболизм другого (глюкозы), конститутивны, в этом случае сначала потребляется только глюкоза, тогда как индукция лактозных ферментов (р-галакгозидазы) не происходит до тех пор, пока не будет потреблена основная часть глюкозы. Это отражается во временном замедлении (прекращении) роста культуры на тот период, который необходим для индукции и синтеза р-галакгозидазы. Таким образом, несмотря на присутствие в среде индуктора (лактозы), альтернативный субстрат (глюкоза) препятствует индукции. [c.75]

    Действие андрогенов и эстрогенов направлено преимущественно на органы воспроизведения, появление вторичных половых признаков, поведенческие реакции. Андрогенам свойственны также анаболические эффекты усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Половые гормоны могут влиять на активность расплетазы и тимидинкиназы — ключевых ферментов редупликации ДНК, поэтому им свойственны митоген-ные эффекты. Основные эффекты половых гормонов опосредуются процессами индукции в репрессии синтеза белка (см. раздел 4.3). [c.88]

    Под контролем стеройдных гормонов находится также синтез белковых ингибиторов и активаторов, а также регуляторных субъединиц ряда ферментов. Репрессия синтеза белкового ингибитора может приводить к повышению, а индукция синтеза — к снижению активности фермента, регулируемого этим белком. [c.212]

    Помимо индукции синтеза в других ферментных системах иаблюдается подавление репрессия) их синтеза. Например, если выращивать Е. oli на среде, ие содержащей аминокислоты гистидина, то активно образуются ферменты синтеза гистидина, Но как только гистидин добавляют в среду, синтез этих ферментов прекращается. В данном случае, следовательно, происходит подавление синтеза ферментов. Это явление известно как подавление конечным продуктом, поскольку продукт цепи [c.459]

    В последнее время показано, что индукция и репрессия могут быть генерализованными, т. е. контролироваться не каким-либо одним конкретным индуктором или корепрессором, а целой группой сходных с тем и другим соединений. Накапливаются также сведения о том, что один-единственный эффектор (например, ррСрр—3 -пирофосфо-гуанозин-5 -дифосфат) может индуцировать биосинтез целого семейства ферментов (например, ферментов биосинтеза гистидина и ряда других аминокислот). Поэтому проблема индукции и репрессии биосинтеза ферментов достаточно сложна, особенно в отношении индукции синтеза ферментов, не свойственных данному организму (например, ферменты детоксикации инсектицидов у насекомых). [c.477]

    Примером регуляции путем репрессии синтеза может служить гистидиновый оперон бактерий Salmonella typhimurium. Этот оперон содержит 10 структурных генов, кодирующих 10 ферментов, необходимых для синтеза гистидина. Ферменты образуются только в том случае, когда в среде нет готового гистидина и клетки вынуждены сами синтезировать его из других веществ добавление гистидина в среду прекращает синтез ферментов. Несмотря на противоположный результат индукции и репрессии синтеза белков, их молекулярные механизмы очень сходны. В действии гистидинового оперона легко разобраться, если на рис. 4.22 вместо в присутствии лактозы поставить в отсутствие гистидина , вместо в отсутствие лактозы — в ирису ствии гистидина и вместо 3 структурных генов лак-тозного оперона — 10 структурных генов, кодирующих ферменты для синтеза гистидина. [c.143]


Смотреть страницы где упоминается термин Индукция и репрессия синтеза ферментов: [c.244]    [c.52]    [c.154]    [c.161]    [c.955]    [c.65]    [c.239]    [c.216]    [c.55]    [c.61]    [c.83]    [c.96]   
Смотреть главы в:

Современные методы создания промышленных штаммов микроорганизмов -> Индукция и репрессия синтеза ферментов




ПОИСК





Смотрите так же термины и статьи:

Фермент репрессия



© 2024 chem21.info Реклама на сайте