Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Альтернативные субстраты

    Способность фермента катализировать одну и только одну специфическую реакцию является, пожалуй, наиболее важным его свойством. Благодаря этому скорости специфических метаболических процессов могут регулироваться путем изменения каталитической активности специфических ферментов. Правда, многие ферменты катализируют реакции одного типа (перенос фосфата, окислительно-восстановительные реакции и т.д.), субстратами при этом является небольщое число структурно сходных соединений. Реакции с альтернативными субстратами происходят в тех случаях, когда эти субстраты присутствуют в высоких концентрациях. Протекают ли в живых организмах все реакции, возможные при участии данного фермента, зависит от относительной концентрации альтернативных субстратов в клетке и относительного сродства фермента к этим субстратам. Ниже мы рассмотрим некоторые общие аспекты специфичности ферментов. [c.67]


    Для анализа экспериментальных данных (распределение продуктов ферментативной деструкции полимера в зависимости от степени полимеризации, или средняя степень полимеризации продуктов гидролиза) используют теоретические модели ферментативной деструкции полимеров — обычно весьма детализированные, но, как правило, содержащие сильные (и неочевидные) допущения, лишающие смысла всю детализацию. К ним относятся допущения об аддитивности показателей сродства индивидуальных сайтов, о постоянстве гидролитического коэффициента независимо от способа связывания субстрата и степени его полимеризации, о постоянстве инкремента свободной энергии активации действия фермента при последовательном заполнении его сайтов и т. д. Несоответствие теоретических данных, рассчитанных с помощью подобных упрощенных моделей, с экспериментальными нередко трактуется как доказательство в пользу существования таких неординарных механизмов, как множественная атака. При этом в работах, как правило, отсутствует критический анализ ограничений модели, и в частности анализ альтернативных механизмов действия фермента без априорного привлечения неординарных механизмов. [c.103]

    На самом же деле плохое связывание субстрата с участком D по сравнению с другими участками активного центра лизоцима вовсе не обязательно должно приводить к деформации соответствующего фрагмента субстрата уже в комплексе Михаэлиса, даже если каталитическое превращение данного субстрата происходит с высокой эффективностью. Альтернативным механизмом превращения субстрата в этом случае является изменение конформации сахаридного остатка не в основном состоянии (комплекс Михаэлиса), а в переходном в результате соответствующей перестройки [c.164]

    Альтернативно, вместо второй молекулы амина можно использовать другое основание, например Н2О или ОН . Для некоторых субстратов в определенных условиях, особенно при низких значениях pH, лимитирующей стадией может стать распад иона 103 [735]. Реакция идет и в кислой среде, при этом действует общий кислотный катализ. В этом случае скорость определяется распадом иона 103, который происходит следующим образом 736]  [c.159]

    Высочайшие скорости ферментативно катализируемых реакций не могут заслонить их другую, еще более впечатляющую особенность, а именно уникальную хемо-, регио- и стереоспецифичность. Действительно, ферментативные реакции протекают по одному вполне определенному реакционному центру молекулы субстрата без каких-либо побочных реакций, затрагивающих альтернативные и почти идентичные центры, с полным контролем абсолютной стереохимии продукта, равно как и с выбором единственного стереоизомера субстрата, подвергающегося трансформации. В этом отношении современная органическая химия при всей мощи ее методического арсенала пока еще неспособна сравниться с Природой. [c.488]


    Механизм восстановления растворенным металлом включает передачу электрона от металла на вакантную орбиталь субстрата (А) с образованием анион-радикала. Последний может далее протонироваться, давая радикал, который в свою очередь, принимая другой электрон, превращается в анион. Протонирование последнего приводит к образованию продукта реакции. Альтернативный путь включает одновременное или постадийное присоединение к субстрату двух электронов с образованием дианиона, который, присоединяя последовательно два протона, дает тот же продукт реакции  [c.170]

    В ароматическом ряду лишь в некоторых случаях, например в реакциях дифенила и полициклических ароматических соединений, может реализоваться альтернативный путь с участием дианиона, образующегося за счет присоединения электрона к анион-радикалу. Это присоединение, очевидно, идет медленно, так как в кольце уже присутствует отрицательный заряд, но скорость его может возрастать, если структура субстрата способствует эффективной делокализации заряда. [c.172]

    Каждый акт элонгации цепи должен начинаться с отбора субстрата (рис. 49). Скорее всего этот процесс происходит путем перебора всех альтернативных субстратов, присутствующих в системе. Для этой цели активный центр должен обладать сродством к универсальной части субстратов, которая имеется у всех типов мономеров. Так, у нуклеозит-5 -трифосфатов такой частью является трифосфат-ный фрагмент и остаток рибозы или дезоксирибозы. Попадание в активный центр нужного субстрата, опознаваемого кодирующим элементом матрицы, является сигналом для осуществления ферментативной реакции соединения мономерного фрагмента с концом синтезируемой полимерной цепи. В чем заключается природа этого сигнала, до настоящего времени не установлено. Можно лишь полагать, что взаимодействие мономера с кодирующим элементом, например образование водородных связей между комплементарными гетероциклами субстрата. и матрицы, вызывает конформационное изменение, приводящее к нужной ориентации реагирующих групп и соответствующих групп каталитического центра фермента или рибосомы. [c.175]

    Механизм с неупорядоченным присоединением субстратов отличается от механизма с упорядоченным присоединением тем, что ни одна из обменных реакций не подавляется избытком альтернативного субстрата полностью. Например, если В присутствует в избытке, то А не может связаться формой Е, а вместо этого присоединяется к ЕВ с образованием комплекса ЕА В, который может распадаться, давая Р или Р. Поскольку радио-аггтивность определяется с очень высокой чувствительностью, метод иэотопного обмена позволяет обнаружить второстепенные альтернативные пути реакции. Следует, однако, оговориться, что для получения методом изотопного обмена достаточно надежных результатов необходимы гораздо более очищенные препараты ферментов, чем при обычных кинетических измерениях. Причина этого очень проста. Допустим, что мы изучаем алкогольдегидро-геназу, которая катализирует реакцию [c.137]

    Большую роль в регуляции транскрипции играет так называемая катаболитная репрессия (старое название глюкозный эффект ), которая проявляется в диауксии в процессе роста бактерий. Феномен диауксии обнаруживается, когда в среде присутствуют два субстрата (например, лактоза и глюкоза), причем ферменты, осуществляющие катаболизм одного из них (лактозы), индуцибельны, а ферменты, осуществляющие катаболизм другого (глюкозы), конститутивны, в этом случае сначала потребляется только глюкоза, тогда как индукция лактозных ферментов (р-галакгозидазы) не происходит до тех пор, пока не будет потреблена основная часть глюкозы. Это отражается во временном замедлении (прекращении) роста культуры на тот период, который необходим для индукции и синтеза р-галакгозидазы. Таким образом, несмотря на присутствие в среде индуктора (лактозы), альтернативный субстрат (глюкоза) препятствует индукции. [c.75]

    В качестве альтернативных источников дигалокарбена для присоединения к затрудненным субстратам в нейтральных условиях используют соединения тригалогенметилфенилртути (реагенты Зейферта). [c.332]

    В рассмотренных примерах субстраты содержали две независимые функциональные группы и задача состояла в проведении реакции но одной из пих. Нередки п ситуации другого рода когда в пределах одной функции возможны дна направления атаки реатепта, ведупще к альтернативным продуктам. [c.129]

Рис. 52 Влияние двух взаимозави-симы.х ингибиторов — борной и н-гексилборной кислот — на скорость реакции гидролиза амидного субстрата, катализируемого а-химотрипсином (а) — без добавления НзВОз, (б) — концентрация НзВОз равна 0,21 М. Пунктирная прямая соответствует альтернативному механизму взанмонезави-симого ингибирования Рис. 52 Влияние <a href="/info/1696521">двух</a> взаимозави-симы.х ингибиторов — борной и н-гексилборной кислот — на <a href="/info/313528">скорость реакции гидролиза</a> <a href="/info/1375981">амидного субстрата</a>, катализируемого а-химотрипсином (а) — без добавления <a href="/info/505089">НзВОз</a>, (б) — концентрация <a href="/info/505089">НзВОз</a> равна 0,21 М. Пунктирная прямая соответствует <a href="/info/1478543">альтернативному механизму</a> взанмонезави-симого ингибирования
    Сравнивается действие двух или нескольких ферментов на один поли- или олигомерный субстрат и выявляется состав образующихся продуктов (различное распределение моно- или олигомерных продуктов по степени их полимеризации и по относительной концентрации). При этом состав продуктов действия одного из ферментов более характерен для неупорядоченного (многоцепочечного) способа действия по сравнению с действием других ферментов. Этого, как правило, для авторов достаточно, чтобы заключить о частичном проявления одноцепочечного механизма действия в последнем случае и, базируясь на выбранной ими модели, рассчитать степень множественной атаки. Кроме того, практически ни в одной из приведенных нами работ не вводились количественные поправки на возможную повторную атаку ( вторичный гидролиз образующихся продуктов реакции), исходя из кинетических параметров ферментативного гидролиза олигомеров с различной степенью полимеризации. Иначе говоря, авторы, априори принимая только механизм множественной атаки, не делают контрольных расчетов по альтернативным механизмам ферментативного гидролиза полимеров. [c.102]


    Автор допускает возможность существования множественной атаки при действии деполимераз. Более того, он убежден, что этот механизм может играть важную роль в ферментативной деструкции нерастворимых биополимеров, где продвижение адсорбированного фермента по поверхности субстрата происходит с участием периферийных частей белковой (гликопротеиновой) глобулы, что легко представить условно как перекатывание фермента по поверхности нерастворимого субстрата. Наконец, при гидролизе нерастворимых биополимеров важную роль играет своеобразный клеточный эффект , когда молекула фермента последовательно действует на один и тот же участок субстрата, не успевая диффундировать от него на достаточное расстояние и снова адсорбируясь в определенной близости от места предыдущей атаки. Иначе говоря, автор не против множественной атаки, как и других неординарных механизмов ферментативного катализа. Однако в любом случае они должны быть строго обоснованы, и следует обязательно учитывать альтернативные и более тривиальные механизмы. В противном случае и без того сложная картина кинетики и механизмов действия деполимераз дополнительно усложняется введением надуманн 1х-эффектов и необоснованных концепций. [c.104]

    Альтернативный вариант изменения конформации субстрата на участке D активного центра лизоцима лить после прохождения комплекса Михаэлиса не был рассмотрен Филлипсом с сотр. и ПС анализировался в литературе вплоть до нос.леднего времени. Предложенная ими гипотеза об искажении конформации сахаридного кольца субстрата непосредственно в комплексе Л и-хаэлиса была весьма смелой, однако повлекла за собой целую лавину экспериментальных и теоретических работ, которые ставили своей целью проверить данную гипотезу и выявить общность данного эффекта для действия других ферментов. [c.165]

    ЛИШЬ в редких случаях. В тех редких случаях, когда отмечалось свободнорадикальное присоединение H l ориентация по-прежнему соответствовала правилу Марковникова, по-види-мому, потому, что образуется наиболее стабильный продукт [121]. Свободнорадикальное присоединение HF, HI и НС1 энергетически невыгодно (см. обсуждение в разд. 14.5 и при описании реакции 14-1). Присоединение НВг против правила Марковникова часто наблюдалось и в отсутствие пероксидов. Это происходит в результате того, что субстрат (алкен) адсорбирует кислород воздуха, образуя небольшие количества пероксидов (реакция 14-8). Присоединение по правилу Марковникова можно обеспечить тшательной очисткой субстрата, но практически этого нелегко добиться, и поэтому большее распространение получило проведение реакции в присутствии ингибиторов, например фенолов или хинонов, которые предотвращают протекание реакции по свободнораднкальному пути. Присутствие свободнорадикальных инициаторов, таких, как пероксиды, не ингибирует ионный путь реакции, но свободнорадикальное присоединение, будучи цепным процессом, идет намного быстрее, чем электрофильная реакция. В большинстве случаев оказывается возможным контролировать механизм (а следовательно, и ориентацию), добавляя пероксиды для проведения свободнорадикального присоединения или ингибиторы для осуществления электрофильного пути, хотя известны случаи, когда реакция по ионному пути идет так быстро, что может конкурировать со свободнорадикальным механизмом, и полного контроля достичь не удается. Присоединение НВг, НС1 и HI по правилу Марковникова с высокими выходами осуществлено с использованием межфазиого катализа [122]. Альтернативные методы присоединения НВг (или HI) против правила Марковникова рассмотрены в разделе, посвященном реакции 12-28 (т. 2). [c.162]

    Из этих примеров видно, что многие из нуклеофилов с центром на атоме углерода, рассматривавшиеся в т, 2, гл. 10, также выступают как нуклеофилы по отношению к альдегидам и кетонам (ср. с реакциями 10-96—10-100 и 10-102). Как указывалось в гл. 10, во многих случаях первоначально образующиеся продукты, например 34-37, с помощью относительно несложных процедур (гидролиз, восстановление, декарбоксилирование и т. п.) можно превратить в ряд других продуктов. Для реакции терминальных ацетиленов [423] чаще всего в качестве реагентов используются ацетилениды натрия (такая реакция часто называется реакцией Нефа), однако применимы также и ацетилениды лития [424], магния п других металлов. Особенно удобным является комплекс ацетилепид лития — этилендиамин [425], который представляет собой устойчивый сыпучий коммерчески доступный порошок. По альтернативному методу субстрат обрабатывают самим алкином в присутствии основания так, что ацетиленид генерируется in situ. Такая методика носит название реакции Фаворского (не путать с перегруппировкой Фаворского, т. 4, реакция 18-8) [426]. При обработке альдегидов диметаллоацетиленами МС = СМ получают 1,4-диолы [427]. [c.389]

    В си ту сказанного становится понятным, почему большинство классических синтетических методов, описываемых в терминах ионных реакций, основаны по сути дела на одной и той же общей схеме сочетания ионный нуклеофил -ь ковалентный элсктрофил, а не на альтернативном варианте ионньгй электрофил + ковалентный нуклеофил. Очевидным исключением в этом отношении является электрофильное замещение в ароматическом ряду (реакция Фриделя—Крафтса), в которой именно карбокатионные реагенты выступают в роли электрофилов, а нуклеофилами служат ковалентные ароматические субстраты. При этом следует отметить, что жесткость классических условий проведения алкилирования или ацилирования по Фриделю— Крафтсу делают этот метод малоприменимым по отношению к кислотолабильным субстратам, и поэтому использование этой реакции в полном син- гезе ограничено. Между тем за последние 10—15 лет псе большее внимание уделяется развитию новых эффективных и общих методов стабилизации карбокатионов как реагентов и интермедиатов, и к настоящему времени уже накоплено достаточно данных, позволяющих утверждать, что синтетические методы, основанные на реакциях ионных электрофилов с ковалентными нуклеофилами, могут явиться существенным дополнением к уже существующим традиционным методам образования связи С-С с помощью карбани-онных реагентов. Рассмотрим некоторые примеры, иллюстрирующие это ут-Верадение. [c.125]

    Легко видеть, что в молекулах такого типа взаимодействие между концевыми функциями может протекать не только по схеме внутримолеку-wpHou реакции, приводящей к образованию требуемого циклического продукта 269, но и как межмолекулярная реакция с образованием продуктов олигомеризашш типа 270. Относительные скорости этих двух альтернативных налрав. тений мохут изменяться в широких пределах в зависимости от особенностей строения субстрата, а также условий проведения реакции. Скорость межмолекулярной реакции зависит, Б первую очередь, от таких внешних факторов, как концентра- [c.211]

    Классический метод проведения макролактонизации был разработан в группе Циглера в 1930-х годах [30с]. Суть этого метода — исполыование условий высокого разбавления. В этих условиях резко уменьшается вероятность межмолекулярных столкновений и соответственно подав тяется образование олигомерных продуктов. В то же время скорость внутримолекулярной реакции не зависит от концентрации субстрата, которая в общем случае не может повлиять на вероятность встречи дпух концов одной и той же молекулы. Этот метод вполне универсален, и с его помощью в 1930-50-х годах были выполнены многочисленные синтезы соединений, содержащих циклы среднего и большого размеров [30с]. Тем не менее явные технические неудобства этого метода (маи1ые количества вещества при большом количестве растворителя) требовали разработки альтернативных путей, основанных на избирательном форсировании внутримолекулярной реакции. [c.222]

    Простотой приготовления субстратов с помошью надежных методов соединения относительно небольших и легко доступных фрагментов. Эта схема без драматической перестройки применима для синтеза разнообразных других триквинанав. Разумеется, такая стратегия ( сак и всякая другая ) не может рассматриваться к к универсальная. Те.м не менее, область ее применимости к синтезу широкого спектра структур поликвинанов гораздо обширнее, чем у любых альтернативных подходов. [c.345]

    Подходы к синтезу витасомнина на основе замещенных пиразолов предполагают использование в качестве ключевых субстратов у-замещенные пропилпиразолы 10, которые, в свою очередь, получают функционализацией пиразолов 11 в положение 3 или конструированием пиразольного кольца с требуемой явной или скрытой функциональностью на базе ненасыщенных кетонов 12. Альтернативный подход, включающий формирование пиразольного цикла, основывается на использовании М-нитрозо 13 или М-аминопирролов 14, первый из которых трансформирует в [c.373]

    Эти результаты показали, что уксусная кислота, полученная из субстрата с 25,35-конфигурацией, имела S конфигурацию /i-уксусная кислота была получена из субстрата с альтернативной 2R,3S-конфигурацией. Из этих данных сделай вывод, что лиазная реакция стереоспецифична и идет с обращением конфигурации. [c.30]

    Щелочные металлы образуют органические производные двух типов соединения, содержащие обычные связи углерод — металл, и вещества, образующиеся в результате переноса одного электрона от металла к субстрату. Следует отметить, что оба типа соединений неразличимы, если их образование включает две стадии одноэлектронного переноса. Например, фор-мула (25), опи-сываюп ая результат переноса двух электронов от натрия к аце-нафтилену, представляет собой просто альтернативное изображение динатриевого производного ацеиафтена (26). [c.31]

    Основная проблема заключается в том, как прикрепить субстрат к полимеру в химии ароматических углеводородов и алифатических соединений это делают с помощью функциональной группы (схемы 2 и 4), такой, как карбоновая кислота или амин, что может ограничивать выбор субстрата в альтернативном методе используют бесследную связку, такую, как силан, который может быть удален, например, при отщеплении водорода от места прикрепления, но этот метод не очень удобен. В этом смысле гетероциклы имеют преимущества Прикрепление к носителю может быть осуществлено с помощью методов [3], подобных описанным выше, а также с помощью кольцевого гетероатома, особенно атома азота в азолах [4] (схема 1) или гетероатома в случае образования гетероциклического кольца на конечной стадии процесса [5] — часто бывает легко проводить реакцию таким образом, чтобы конечная стадия циклизации (образование гетероцикла) сопровождалась одновременным отделением конечного продукта от носителя (схема 3). Атом серы представляет собой удобную связку при синтезе гетероциклов, поскольку он используется как уходящая группа (даже лучше после превращения в сульфоксид [6] или сульфон [7]), что способствует отделению от носителя (схема 5). Для полного обсуждения реакционной способности гетероциклов, использованных в приведенных примерах, следует обращаться к предьщущим главам. [c.673]

    При рациональном планировании синтеза целесообразно произвести мысленную разборку целевой молекулы, т.е. представить себе, из каких ближайших предшественников эту молекулу можно собрать с помошью реальных реакций. Затем следует таким же образом проанализировать структуры этих предшественников, найти для них рациональные пути синтеза и идти таким путем далее, вплоть до доступных исходных веществ. Теоретически подобный ретросинтетический анализ может начинаться с разрыва любой из связей целевой структуры. Анализ подобных альтернативных решений и выбор наилучшего из них — сложнейшая и увлекательнейшая работа. И в высшей степени ответственная. В самом деле, при разработке плана синтеза необходима определенная степень уверенности в том, что каждая реакция, включенная в схему, пойдет именно так, как предполагается. А стопроцентной уверенности почти никогда не бывает, так как синтетику приходится, как правило, впервые проводить ту или иную реакцию применительно к данному конкретному субстрату. Понятно, что цена ошибки в предвидении весьма различна в зависимости от того, к какой стадии она относится. Ошибка на первой стадии может означать потерю всего лишь нескольких дней, тогда как неверно предсказанный результат заключительной стадии, скажем 40-стадийного синтеза, может зачеркнуть многие месяцы труда, потому что эта ошибка обнаружится не ранее, чем будут выполнены предшествующие 39 стадий. Поэтому синтетический план должен быть по возможности гибким, допускающим различные варианты проведения одних и тех же стадий, причем самые рискованные синтетические шаги лучше сдвинуть к началу схемы. [c.9]

    В рассмотренньгх случаях субстраты содержали две независимые функциональные группы, и требовалось провести селективно реакцию по одной или другой из этих функций. Нередки и иные ситуации, когда в пределах одной и той же функции возможны два направления атаки реагента, ведущие к альтернативным продуктам. Типичный пример показан на схеме 2.72. [c.164]


Смотреть страницы где упоминается термин Альтернативные субстраты: [c.444]    [c.220]    [c.115]    [c.123]    [c.269]    [c.195]    [c.9]    [c.164]    [c.164]    [c.175]    [c.244]    [c.414]    [c.750]    [c.753]    [c.101]    [c.284]    [c.382]    [c.185]    [c.133]    [c.164]   
Ферменты Т.3 (1982) -- [ c.157 , c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Субстрат



© 2025 chem21.info Реклама на сайте