Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы движения у растений

    Способы движения растений можно классифицировать следующим образом  [c.390]

    Поступление питательных веществ в растения через корни. Длительное время в физиологии растений и агрохимии господствовало представление о чуть ли не прямой пропорциональности между количеством испаренной растением воды и поглощенных им солей из почвы. Осмос (всасывание) солей вместе с водой в растительную клетку считался единственно возможным способом движения питательных веществ из почвы в растения. Теперь это представление уже недостаточно для объяснения процессов корневого питания высших растений. [c.40]


    Все эти особенности растительного организма связаны с его способом питания. Растению нет необходимости передвигаться в поисках пищи, как животным, так как СО2, вода, минеральные соли и свет есть в окружающей среде повсюду. Однако эти факторы присутствуют в рассеянном состоянии. Поэтому, чтобы максимально приблизиться к п 1ще, растение должно удлинять осевые органы и развивать поверхности соприкосновения с окружающей средой. Это и определяет форму растительного организма, а также отсутствие у него специальных органов дыхания, так как растение дышит всей своей разветвленной и пластинчатой поверхностью. Медленно меняющиеся условия окружающей среды не требуют от растений быстрых двигательных реакций. Однако при необходимости в процессе эволюции у них развивается способность к быстрым движениям, как, например, у мимозы или у венериной мухоловки. [c.29]

    Способы движения у растений [c.390]

    К этому перечню можно добавить пассивные механические движения растений, такие, как растрескивание спорангиев, сухих плодов и т. д. Распространен у растений пассивный способ переноса пыльцы и семян с помощью ветра и представителей животного мира. Для этой цели в процессе эволюции возникли многочисленные приспособления. [c.391]

    В основе локомоторных способов движения клеток лежит функционирование систем сократительных белков, обеспечивающих превращение химической энергии АТР в механическую энергию. Локомоторные движения у растений присущи клеткам, перемещающимся с помощью жгутиков. [c.393]

    Несмотря на разнообразие отмеченных способов движения, необходимо еще раз подчеркнуть, что для растительного мира в целом наиболее характерно движение за счет роста растяжением. Особенность этого способа движения состоит не только в том, что он осуществляется за счет осмотических сил, но и в том, что он необратим. Поэтому рост растяжением у растений является одновременно и элементом морфогенеза. [c.410]

    Окислительная деструкция — первый способ искусственного получения веществ, противоположный синтетическому,— сыграла важную роль в расширении представлений об органических соединениях. Первоначально к области изучения органической, химии относили лишь вещества, выделенные из растений и животных. Последовательное упрощение их — движение вниз по лестнице сгорания — привело к получению простейших органических [c.23]

    Вода и другие соединения перемещаются под действием разнообразных специфических сил. Известно, что в растениях движение воды и растворенных в ней веществ происходит в основном двумя способами за счет диффузии и в виде потока. [c.515]


    Автоматический полив метод орошения для стеллажей. Правильный полив растений вручную отнимает много времени, требует соответствующих знаний и опыта. Существует несколько способов автоматического полива растений независимо от того, высажены они в горшки или грядки. При выращивании большого числа разнообразных растений в горшочках, особенно если владелец теплицы отсутствует в течение дня, рационально применять капиллярную систему полива. Этот способ основан на действии капиллярных сил увлажненного песка — вода поднимается через узкие пространства между частицами песка и через дренажное отверстие поступает в горшок. Дно стеллажа выстилают прочной синтетической пленкой и заполняют отмытым песком на высоту 5—8 см. Можно использовать также специальные поддоны или кюветы. Поверхность песка постоянно поддерживают во влажном, но не переувлажненном состоянии с помощью лейки или автоматического устройства. Простейшее устройство представляет собой перевернутую бутылку с насадкой, закрепленную в держателе, из которой вода поступает непосредственно в песок или соединительный водосток. В более автоматизированной системе напорный резервуар с насадкой подсоединен к системе центрального водоснабжения, и песок увлажняют через пропускной клапан. Горшки с растениями вращательными движениями вкручивают в песок на глубину около 3 см так, чтобы песок забился в дренажное отверстие или дырки и соприкасался с почвой. Вместо песка можно использовать так называемый капиллярный мат, влажность которого поддерживают тем же способом. Однако со временем он зарастает синезелеными водорослями и требует тщательной мойки или замены. [c.49]

    Обработку Культур сплошного посева опрыскивателями 0ВТ-1А следует проводить параллельными гонами под углом 45—135° к направлению ветра, начиная с наветренной стороны участка. На посевах пропашных культур двигаться необходимо по направлению рядков. Основным способом движения опрыскивателей 0БТ-1А является челночный с беспетлевыми поворотами, а ОН-10 — челночный с петлевыми поворотами. Если из-за направления ветра направление обработки опрыскивателями OBT-IA не может совпадать со сторонами поля, то на культурах сплошного сева она проводится по его диагонали, а на пропашных — только тогда, когда обрабатывается почва, до появления всходов культурного растения. [c.82]

    Прослеживая этапы развития физиологии растений, можно видеть, что физиологические функции, которые столетие назад только описывались, в настоящее время детально изучены на биохимическом и молекулярном уровнях роль органоидов, энергетика, ассимиляция СО2, многие участки обмена веществ, механизмы регуляции и наследственности. Близки к разрешению такие процессы, как фотохимические реакции фотосинтеза, механизмы транспорта веществ. В то же время в современной физиологии наряду с молекулярно-биохимическим подходом все более возрастает интерес к растительному организму как целостной системе со всеми ее внутренними и внешними взаимосвязями. Поэтому в предлагаемый читателю учебник включена - глава Систе.мы регуляции и интеграции у растений , которая предшествует обсуждению механизмов, лежащих в основе различных сторон функциональной активности растений. Наряду с традиционными разделами (фотосинтез, дыхание, водный режим, минеральное питание и др.) в учебник введена глава по гетеротрофному способу питания растений, так как незеленые ткани и органы, а при отсутствии света клетки всех частей растения питаются гетеротрофно. В отдельные главы выделены описания таких физиологических функций, как секреция, дальний транспорт веществ, половое и вегетативное размножение, движение. Рост и развитие растений рассматриваются на клеточном уровне (гл. 10) и на уровне целого организма (гл. 11 и 12). В этих процессах ведущую роль играет взаимодействие клеток между собой. [c.8]

    Функциональная роль рассмотренных выше систем регуля-Роздрожимость ции и интеграции находит свое выражение в явлениях раздражимости. Раздражимость — это способность живых организмов и их клеток отвечать на изменения во внешней и внутренней среде адаптивными, т. е. приспособительными, реакциями. Так как условия внешней среды постоянно меняются, любой организм для получения достаточного количества пищи и нормального функционирования должен оценивать качественные и количественные изменения во внешней и внутренней среде и реагировать на эти изменения таким образом, чтобы выжить. Если бы организмы не обладали этим свойством, то они не имели бы ни малейших шансов сохраниться в борьбе за существование. Однако до настоящего времени проблема раздражимости не нашла должного отражения в физиологии растений, несмотря на то, что ее во всем объеме поставил Ч. Дарвин более 100 лет тому назад. Совершенно ясно, что если растению недостает какого-то фактора жизнеобеспечения, например света как компонента воздушного питания, то оно не остается пассивным (иначе погибнет) включаются механизмы, способствующие удлинению стебля, причем настолько, насколько это необходимо. То же наблюдается и у корней при нехватке минеральных веществ. Если рассматривать удлинение стебля и корня как способ движения у растений, то нужно сказать, что у растений, как и у животных, с помощью механизмов раздражимости оценивается ситуация и включаются двигательные и другие механизмы для ее изменения. [c.54]


    В некоторых случаях продвижение в пространстве у растений достигается за счет верхушечного роста (гифы грибов, пыльцевые трубки, корневые волоски). С использованием изменений тургорного давления в клетках осуществляются движения устьиц, медленные настические движения листьев или быстрые движения листьев в ответ на сотрясение (сейсмонастии). Однако для подавляющего большинства растений, начиная с нитчатых водорослей, характерным способом перемещения в пространстве является рост растяжением. В основе движения растений лежат осмотические процессы в отличие от движений животных, происходящих с участием сократительных белков. [c.390]

    Удлинение нити за счет деления клеток — процесс очень медленный. Появление у растительных клеток способности быстро удлиняться путем образования большой центральной вакуоли и растяжения клеточной стенки явилось приобретением, которое можно назвать ароморфозом. Действительно, для индивидуальной клетки ее удлинение и постенное расположение цитоплазмы оказались оптимальными для поглощения света хлоропластами. Нитчатая водоросль, удлиняющаяся за счет растяжения клеток, получила возможность гораздо быстрее двигаться к свету, поскольку длина клетки за сравнительно короткое время увеличивается в десятки и сотни раз. Такая форма движения по необходимости должна быть необратимой и поэтому одновременно является элементом морфогенеза. Удлинение клеток за счет роста рястяжением оказалось настолько удачной формой движения, что наряду с фотосинтезом стало основой развития растительного мира. Легко убедиться, что рост растяжением характерен только для растительных организмов ни у бактерий, ни у животных такого способа роста клеток не существует, так как рост растяжением возник у растений как способ движения многоклеточных автотрофных организмов (В. В. Полевой, Т. С. Саламатова, 1985). [c.411]

    Таким образом, у растений наблюдается прогрессивная эволюция способов движения от необратимого удлинения за счет роста растяжением к обратимым ростовым движениям (круговые нутации, тропизмы), затем к тургорным движениям (настии), котор>(е уже не связаны с ростом растяжением, и, наконец, к быстрым тургорным движениям (сейсмонастии), где скорость передачи гормонального сигнала недостаточна и для управления двигательной активностью используется электрический импульс (потенциал действия). Причем у растений эволю-ционно продвинутых таксонов сохраняются в различных комбинациях и все ранее возникшие формы движения., [c.412]

    Главный способ движения органов растений связан с особым типом роста клеток — ростом растяжением. За счет зон роста растяжением в стебле и корне происходит более или менее интенсивное удлинение осевых органов в зависимости от условий окружающей среды (необратимый способ движения). Более обратимы reo-, фото-, хемо-и другие типы тропизмов (ростовых изгибов) и полностью обратимы настии, многие из которых осуществляются за счет изменения тургорного давления в клетках (тургорные изгибы). Возможно, все эти формы движений возникли из круговых нутаций, присущих всем растениям, особенно в молодом возрасте. Особый тип удлинения клеток — верхушечный рост — характерен для корневых волосков, пыльцевых трубок, гиф грибов. Регуляция ростовых и тургорных движений осуществляется с участием фитогормонов. [c.412]

    Так, например, при неупругих столкновениях обшивок ракет и самолетов с молекулами воздуха, за счет накопления энергий неупругих соударений, обшивки могут оплавляться, а молекулы азота и кислорода вступать в каталитические реакции с образованием окислов азота и другие [25-27]. Поэтому, если в каталитических и ферментативных реакциях для их ускорения необходимо повышать частоту и энергию неупругих соударений, то для снижения сопротивления трения газов и жидкостей на твердой поверхности требуется снижать частоту и энергию неупругих соударений. Автором монографии разработаны и внедрены в промышленность принципиально новые и более экономически эффективные способы повышения частоты и энергии неупругих соударений реагирующих веществ с катализаторами, которые способны повышать активность всех имеющихся в мире промышленных катализаторов [17], а также экономически эффективные способы снижения частоты и энергии неупругих соударений обтекающих газов и жидкостей о твердую поверхность, в результате которых снижается сопротивление их трения до 20% , а следовательно, сокращают расход топлива на единицу мощности двигателя, также на 20% [28]. Эти же методы повышения или понижения частоты неупругих соударений можно применить и для повышения нли понижения скоростей ферментативных реакций в клетках животных и растений, так как термодесорбируемые субстраты неупруго соударяются внутренними поверхностями "кармана" (щелей) глобул ферментов, а изотермически десорбируемые субстраты (химически превращаемые вещества ферментом) неупруго соударяются с поверхностью глобул фермента [15]. Отметим, что полярные С и М-концевые и боковые группы белковой части ферментов расположены на поверхности глобул ферментов [29-31], их вращательные и колебательные движения совершаются с целью повышения частоты и энергии неупругих соударений субстратов с поверхностью глобул ферментов. Поэтому скорость ферментативных реакций в 10 " раз превышает скорости химических [29]. [c.46]

    Явление адсорбции газов и паров широко используется для очистки смесей от вредных примесей, для разделения смесей и их анализа. Получила большое развитие газовая хроматография, основанная на открытом М. С. Цветом (1903 г.) методе разделения смесей. В одном из вариантов этого метода — проявительной хроматографии— поток растворителя или несущего газа, содержащего смесь различных компонентов, двигается по адсорбенту. Каждый из комноиентов смеси отличается от других своей адсорбируемостью. Поэтому по мере движения смесь изменяет свой состав, и комионенты разделяются. Название хроматография связано с тем, что М. С. Цвет впервые использовал этот способ для разделения окрашивающих пигментов растений. [c.225]

    Борьбу с насекомыми-вредителями полезных растений, продуктов и материалов животного и растительного происхождения-люди ведут давно, и с переменным успехом. Больщие надежды, возлагаемые когда-то на ДДТ, гексахлоран и другие химикаты, не оправдались. Со временем насекомые к ним привыкли, а вот для человека, полезных животных, рыбы и птиц они оказались далеко не безвредными. При опылении с самолетов инсектицидами больших территорий вместе с вредителями гибнут зайцы, косули и другие животные. Поэтому изыскиваются иные способы дезинсекции в полях и лесах, и один из них-отравление насекомых диоксидом серы (SO2). Этот газ смертелен для большинства летаюпщх и ползающих вредителей. Но обрабатывать газом поля бессмысленно, его уносит ветром, а большие концентрации и массированный пуск газа небезопасны. А вот если газ заключить в пену (вспенить им раствор поверхностно-активного вещества) и этой пеной обработать пораженные вредителями площади с помощью, например, пожарного автомобиля, то при движении автомобиля все птицы улетят, животные разбегутся, а насекомые в газовой среде погибнут. Пена через несколько часов разрушится, и поле или лес станут безопасными для человека и животных. Создаются такие отравляющие пены и для дератизации-борьбы с грызунами крысами, мышами, хомяками в животноводческих помещениях. Опыты оказались удачными. Такая дератизация выполняется за несколько часов (ее можно провести, например, во время дневного выпаса животных). Пена быстро разрушается, ее остатки легко смыть водой. [c.119]

    Веществом или материею называют то, что, наполняя пространство, имеет вес, т. е. представляет массы, притягиваемые землею и другими массами материи, то — из чего состоят тела природы и с чем совершаются движения и явления природы. Рассматривая и исследуя разными способами предметы, встречаемые в природе и производимые искусством, легко заметить, что одни из них однородны во всех частях, а другие состоят из смеси нескольких однородных веществ. Легче всего это заметить на телах твердых. Металлы, употребляемые в практике (например золото, железо, медь), должны отличаться однородностью, иначе они становятся хрупкими и часто негедными для изделий. Однородное вещество, представляет во всех частях одинаковые свойства. Раздробивши однородное тело, получим части, сходные между собою по свойствам, хотя различные по форме. Стекло, хорошие сорта сахара, мрамора, соли и т. п. представляют примеры однородных тел. Но примеры неоднородных тел гораздо обыкновеннее в природе и искусстве. Так, большая часть камней не однородна. В порфирах часто видны вкрапленные в темной массе более светлые куски минерала, называемого полевым шпатом. Б обыкновенном красно-буром граните можно отличить большие куски полевого шпата, смешанные с полупрозрачным кварцем и с гибкими пластинками слюды. Растения и животные явно не представляют однородности. Так, листья составлены из кожицы, волокон и мякоти, соков, зеленого красящего вещества и др. Из неоднородных произведений искусства можно указать на порох, который [c.89]

    В тех случаях, когда для искусственного заражения используется суспензия из тел насекомых, не следует вводить в нее эмульгаторы, так как их запах на растениях отпугивает насекомых. Для опрыскивания растений пригодны любые опрыскиватели. Применяемая суспензия должна содержать от 5000 до 200 000 спор паразита в 1 мл, в зависимости от вида микроспоридни, хозяина и способа применения суспензии. Суспензией спор можно проводить сплошную обработку растительности, опрыскивать отдельные гнезда вредителей, колонии гусениц или других стадий вредителей на растениях или же проводить заградительные опрыскивания, обрабатывая листья или части деревьев на пути движения вредителей. [c.482]

    Класс жгутиковых объединяет разнообразные по способам питания простейшие организмы. Окрашенные ( юрмы жгутиковых имеют светочувствительные пигменты (например, хлорофилл) и могут питаться как зеленые растения. Массовое развитие окрашенных жгутиковых вызывает иногда цветение мелких водоемов. Пищей Mastigophora других видов служат растворенные органические вещества, поступающие в клетку через всю ее поверхность. Наконец, среди жгутиковых есть формы, имеющие ротовое отверстие, расположенное у основания жгута. Жгутики для них служат не только органами движения, но и способствуют захвату пищи. Такие жгутиковые способны питаться бактериями, мелкими водорослями Некоторые из окрашенных жгутиковых способны изменять способ питания в зависимости от условий. На свету они питаются как растения ( а в темноте начинают интенсивгю поглощать органические вещества. [c.36]

    В жизни растений настиям принадлежит весьма большая роль. Например, у насекомоядных растений настические движения являются основным способом добывания азотистой пищи. Эпинастия листьев, в результате которой меняется характер расположения листьев по отношению к солнечному свету, может [c.556]

    На системных пестицидах, пожалуй, стоит остановиться более подробнее, потому что мысль о нечто подобном возникла очень давно. Хроники 800-летней давности сообщают, что средневековые садовники и аптекари, пытаясь получить плоды с необыкновенным ароматом, вкусом и цветом, вводили нод кору деревьев или в просверленные в стволе отверстия пряности, краски, лекарства от различных болезней и даже мышьяк, о чем упоминает в своих записях Леонардо да Винчи. Этими нлодадга флорентийские вельможи в зависимости от ситуации или любезно угощали на пирах своих врагов, или посылали их в подарок своим друзьям. Но таким же способом крестьяне защищали деревья от вредителей, заливая в сердцевину ствола через тонкие трубочки смесь из нерца, ладана и вина или жидкую ртуть, которые спасали сады от личинок древоточцев и других пасекомых-вредителей. Так было положено начало системным пестицидам. Дела пошли еще успешнее, когда было изучено движение клеточного сока растений. [c.26]

    Способность к движению — одно из характерных свойств всех живых организмов, начиная от простейших и кончая самыми сложными. Сокраш ение разных мышц и движение листьев растений, биение ресничек и движение жгутиков, деление клеток и движение протоплазмы — все эти разнообразные формы проявления двигательной активности имеют обш ую черту — превраш ение химической энергии, освобо-ждаюш ейся при гидролизе АТФ, в механическую. Белковые структуры, участвую-ш ие в гидролизе АТФ и генерации силы, — это либо миозин и актин, либо кинезин (или динеин) и тубулин. При мышечном сокраш ении механическая работа осуш е-ствляется организованными в надмолекулярные структуры ферментом — АТФазой миозина — и актином. Регулятором двигательной активности в мышцах является кальций. В немышечных клетках, наряду с кальциевой, по-видимому, суш ествуют и другие способы регуляции. Выяснение молекулярных механизмов генерации силы, трансформации химической энергии гидролиза АТФ в механическую работу, а также механизмов регуляции этих процессов является основной задачей биофизики биологической подвижности. Наибольшие успехи в этом направлении достигнуты при исследовании наиболее организованных поперечно-полосатых мышц позвоноч- [c.225]

    Вообще-то растения служат пищей животным. Однако, как показывают настические движения чувствительных волосков D г о S е г а, некоторые специализированные в отношении питания растения могут менять способ питания на обратный . Такие растения, называемые плотоядными, часто пробуждали фантазию писателей. Может быть, вам знаком чешский фильм-пародия Аделе еще не поужинала , снятый по книге Брдешки. Некий барон, а в действительности преступник, вырастил плотоядное растение Аделе. Тем самым он хочет отомстить своему прежнему профессору, который в школе провалил его на экзамене по одной из естественных наук. Первой жертвой цветка Аделе, по-видимому, обладавшего ответными реакциями, обусловленными как тропизмами, так и настиями, была собака графа. Но наводящий на всех страх детектив, которому было поручено расследование этого таинственного случая, наконец все объяснил. Возможно, что кто-нибудь из зрителей фильма задался вопросом, имеются ли действительно такие или подобные растения. Среди примерно 400 видов хищных растений, относимых к пяти семействам, один из видов кувшиночника (Nepenthes), обитающий на Калимантане, образует кувшины вместимостью до 4 л — самые крупные из приспособлений, служащих для ловли животных. Поэтому добычей могут быть только мелкие животные, прежде всего насекомые. Следовательно, никому не надо опасаться встретить Аделе где-либо вне фильма и даже быть съеденным за ужином. [c.121]

    При химическом проведении возбуждения раздраженными клетками выделяется возбуждающее вещество, которое может перемещаться в растении по проводящей и основной тканям. Оно проходит не только через мертвые участки тканей, но и через заполненную водой стеклянную трубочку, соединяющую отрезанный лист с местом, от которого он был отделен. Если это вещество (предположительно речь идет о содержащей азот аминокислоте) дойдет до клеток сочленения, то есть до ткани, способной осуществлять движение, то последует ответная реакция. Выделенное в почти чистом виде возбуждающее вещество, поднимающееся в срезанных побегах мимозы по их проводящим тканям, оказывает свое действие уже при концентрации 10 г/мл. Раздражающе могут действовать также аминокислоты и другие соединения. Например, как показали исследования Шилдкнехта с сотрудниками (1978), смесь, состоящая из 20% L-глютаминовой кислоты и 80% 6-аланина, проявляет особенно сильное раздражающее действие (табл. 3). При проведении этих опытов двух-, четырехнедельные листья Mimosa pudi a, срезанные лезвием безопасной бритвы ниже первичного листового сочленения (рис. 34, а), помещали в водные растворы аминокислот при этом для проведения опытов наиболее благоприятными оказались температуры от 20 до 30° С. Скорость химического проведения раздражения достигает примерно от 0,15 до 2 см/с. Упомянем и второй способ проведения возбуждения — электрический. При нем потенциал действия распространяется со скоростью от 2 до 5 см/с. Путями его проведения, [c.126]

    Имея в виду энергетику, мы лучше понимаем тесную связь гетеротрофного способа питания с обязательной подвижностью животных, а также автотрофии с движениями органов растений. Закрепленные в субстрате растения, так сказать, вовсе не нуждаются в смене мест обитания. [c.174]

    Строение растительного организма определяется способом его питания. Высшие растения как фототрофные организмы имеют органы воздушного (листья) и почвенного (корни) питания, а также другие физиологические системы транспорта веществ, размножения, движения и т. д. Растительная клетка содержит все органоиды, характерные для эукариотических клеток, но в связи с фототроф-ным способом питания обладает присущей только ей пластидной системой, а также полисахаридной клеточной стенкой, двумя типами микротел (пероксисомы и глиоксисомы) и вакуолярной системой, поддерживающей тургор. [c.30]

    Итак, механизмы, лежащие в основе роста клеток растений растяжением, постепенно выясняются, и роль ауксина в этом процессе становится более понятной. Однако не следует забывать, что, хотя увеличение размера клеток во многих отношениях является наиболее характерной ответной реакцией на действие ауксинов, эта реакция ие единственная и, очевидно, даже не всегда первая. Так, ауксин может индуцировать быстрое увеличение интеисивности дыхания и скорости движения протоплазмы. Кроме того, ряд ответных реакций иа действие ауксина не связан с немедлеипой вакуолизацией клеток (например, деление клеток камбия, образование корней, коррелятивное инги бироваиие пазушных почек). Другими словами, хотя ауксин может вызывать быстрое разрыхление клеточной стенки, это отнюдь не единственный способ его действия. [c.143]


Смотреть страницы где упоминается термин Способы движения у растений: [c.42]    [c.219]    [c.2]    [c.395]    [c.42]    [c.102]    [c.184]    [c.354]    [c.122]    [c.115]    [c.340]    [c.303]    [c.24]    [c.39]    [c.201]    [c.324]    [c.410]    [c.276]   
Смотреть главы в:

Физиология растений -> Способы движения у растений




ПОИСК







© 2024 chem21.info Реклама на сайте