Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные аминокислоты в белках тканей

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Полисахариды соединительных тканей (хондроитинсульфаты, гепарин и др., см. стр. 541) образуют с белками этих тканей комплексы, которые долгое время считали комплексами ионного типа, образованными сульфогруппами сульфированных углеводов и основными группами белка. В настоящее время, однако, установлено, что в действительности это белково-углеводные соединения, связанные ковалентной, хотя и довольно лабильной, связью. Комплекс хондроитинсульфата с белком, который был выделен из гиалинового хряща в условиях, исключающих гидролитический разрыв связей , имеет молекулярный вес, достигающий нескольких миллионов. Он содержит, по-видимому, около 20 цепей хондроитинсульфата, присоединенных к белковой цепи , т. е. относится к гликопротеинам типа П1. Результаты мягкого щелочного гидролиза свидетельствуют о наличии 0-гликозидных связей в этом гликопротеине , однако возможно, что они не являются единственным типом связи . После обработки гиалуронидазой, расщепляющей углеводные цепи, и папаином, расщепляющим белковую цепь, выделены гликопептидные фрагменты, содержащие галактозу, ксилозу, а также аминокислоты, в том числе серин . Исследования, проводимые в настоящее время, должны дать окончательный ответ на вопрос о природе связи в комплексе. [c.580]

    Гликирование белков. Один из основных механизмов повреждения тканей при диабете — гликирование (гликозилирование) белков, неферментативная реакция глюкозы со свободными аминогруппами белковой молекулы (Лиз, Apr, N-концевая аминокислота)  [c.415]

    Как отмечалось выше, скелетные мышцы служат основным резервом белка в организме. Они обладают также высокой активностью в отношении деградации одних и синтеза других аминокислот. У млекопитающих именно мышцы являются главным местом катаболизма аминокислот с разветвленной цепью. Мышечная ткань окисляет лейцин до СО2 и превращает углеродный скелет аспартата, аспарагина, глутамата, изолейцина и валина в интермедиаты цикла трикарбоновых кислот. Способность мышц разрушать аминокислоты с разветвленной цепью при голодании и диабете возрастает в 3— [c.341]

    Аминокислоты, находящиеся в биологических тканях, в основном используются для построения белковых макромолекул. Несмотря на различия в химическом строении, они содержат аминную и карбоксильную группы, соединенные с асимметричным атомом углерода. При помощи пептидных связей (гл. 2) они образуют длинные полипептидные цепи — составные части белков. [c.7]


    Содержание основных аминокислот в белках различных тканей [c.106]

    В состав молекулы коллагена в большом количестве входят две основные аминокислоты — глицин и аланин, а также две неосновные — 4-гидроксипролин и 5-гидроксилизин. Глицин занимает каждое третье положение в полипептидной цепи белка и играет важную роль в функции коллагена. В связи с этим требуется достаточная обеспеченность организма данной аминокислотой. Прочность коллагеновых волокон зависит от наличия в тканях витамина С (аскорбиновой кислоты), который участвует в образовании коллагена. [c.242]

    Все нуклеопротеиды можно разделить по меньшей мере на два типа. К первому типу относятся нуклеопротеиды, в которых нуклеиновая кислота связана солевой связью с простыми белками основного характера и низкого молекулярного веса. Такими белками могут быть протамины (сальмин, клупеин, сту-рин), встречающиеся в сперме рыб. К этому же типу относятся нуклеопротеиды, в которых нуклеиновая кислота связана с основными белками более высокого молекулярного веса — гистолами. Примером могут служить нуклеопротеиды, встречающиеся в тканях зобной и поджелудочной желез. Ко второму типу мы относим более сложные структуры — вирусы растений (например, вирус табачной мозаики) и бактериофаги. Содержание нуклеиновых кислот в вирусах колеблется от 5 до 50%. Природа связи между белками и нуклеиновыми кислотами в вирусных нуклеопротеидах изучена слабее, чем в нуклеопро-теидах первого типа. Известно, что в вирусном нуклеопротеиде связи между белком и нуклеиновыми кислотами более лабильны и что для белков вирусов характерно высокое содержание основных аминокислот. Даже сравнительно простые вирусы имеют весьма сложное строение. Еще более сложное строение у таких вирз сов, как вирусы гриппа и пситтакоза. Последние могут даже быть отнесены к микроорганизмам. Подробное строение вирусов этой группы здесь не рассматривается. [c.246]

    ФЕРМЕНТАЦИЯ. Биохимический процесс превращения веществ при переработке растительного и животного сырья. При Ф. главным образом формируются специфические свойства того или иного продукта, его вкус, цвет, аромат и др. Поэтому в пищевой, легкой и фармацевтической промышленности Ф.— основной технологический процесс. Примерами в этом отношении являются чайная, табачная, хлебопекарная отрасли промышленности. Предполагали, что Ф.—микробиологический процесс. Но в настоящее время благодаря исследованиям советских ученых окончательно установлен ферментативный характер этих превращений. Главную ро.иь в этом процессе играют ферменты, как ускорители процессов превращения веществ. Для нормального течения Ф. необходимо прежде всего разрушение тканей и клеток растительного и животного сырья, например помол зерна в мукомольно-хлебопекарном производстве, раздавливание виноградной ягоды в виноделии, томление и сушка табачного листа, скручивание завяленного чайного листа и т. д. Для нормального течения Ф. требуется также создание определенных условий — температура, относительная влажность воздуха и др. Чайный лист после завяливания подвергается скручиванию на специальных машинах — роллерах, где происходит разрушение тканей и клеток листа, содержимое которых подвергается биохимическим изменениям с участием ферментов. Листья чая содержат сложную смесь катехинов, которые при Ф. претерпевают окислительную конденсацию с образованием более сложных соединений. Катехины взаимодействуют не только между собой, но и с разными аминокислотами, образуя соединения, обладающие разными запахами, с сахарами, белками и другими соединениями. В результате сложных превращений при Ф. образуются цвет, вкус, аромат черного байхового чая. Ф. табака — автолитический процесс, происходящий в убитых тканях листьев после их томления и сушки. При этохм окончательно формируются характерные признаки качества табака, как сырья для получения табачных изделий. Изменяется химический состав табака, уменьшается содержание белкового азота и идет накопление растворимых азотистых соединений, ул1еньшается содержание никотина, идет распад углеводов, накопление ароматических со- [c.317]

    Строение железопорфирина цитохрома с приведено на фиг. 55. Обнаружено, что химические и физические свойства белковой части цитохрома с, выделенного из ряда разных тканей, очень сходны. Определена также последовательность аминокислот в полученном из ряда тканей белке, соединенном с железопорфирином. Хотя в белках, выделенных из разных тканей, имеются небольшие различия, последовательность аминокислот у них в основном одна и та же. Предполагаемое строение цитохрома с схематически показано на фиг. 56 [12]. [c.213]


    Основная масса азота большинства аминокислот проходит в реакциях обмена через стадии превращений в глютаминовую и аспарагиновую кислоты или а-аланин. Содержание этих трех аминокислот в белках достигает 25—30%. Кроме того, в процессах обмена в животных тканях указанные аминокислоты возникают из других аминокислот. Так, глютаминовая кислота образуется из пролина, оксипролина, орнитина и, возможно, из гистидина аланин образуется из триптофана, цистина и, вероятно, из серина. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, составляет также около 25—30% белковой молекулы. В результате около 50—60% белковой молекулы составляют аспарагиновая кислота, аланин, глютаминовая кислота и аминокислоты, связанные с ними прямым переходом в обмене. [c.354]

    Без белков или их составных частей — аминокислот — не м о-жет быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов. [c.321]

    Есть основание думать, что потребности организма в аминокислотах должны в количественном отношении соответствовать аминокислотному составу синтезируемых белков. Так, например, отмечено близкое соответствие между потребностями в аминокислотах у крыс и цыплят и соотношением аминокислот в основных тканях тела этих животных [56—61]. Эти данные говорят о том, что совокупность механизмов синтеза белка, которыми располагает организм, обеспечивает эффективное использование имеющихся аминокислот. Изменения содержания аминокислот в пище не отражаются на аминокислотном составе белков тела крысы и цыпленка. Если аминокислоты вводятся с пищей в количестве, близком тому, которое необходимо для обеспечения синтеза белка, то содержание аминокислот в крови возрастает лишь незначительно введение аминокислот в избытке сопровождается повышением их содержания в крови [62]. [c.125]

    Белки — сложные органические соединения (биополимеры), состоящие из остатков 20 аминокислот основной материал клеток и тканей (до 80% сухой массы), ферментов, гормонов, дыхательных пигментов (гемоглобины), защитных веществ (иммуноглобулины) и др. В организме человека более 5 млн белков. [c.186]

    Аминокислотный состав. Белки состоят из аминокислот. Известно около 200 различных аминокислот, однако для построения белков в животных и растительных тканях используются только 20. Называются эти аминокислоты основными. [c.228]

    Первые крупные исследования по изучению интенсивности обновления белков в тканях растений были выполнены Ф. В. Турчиным с сотрудниками в начале пятидесятых годов. В этих опытах овес подкармливали сульфатом аммония, меченным тяжелым изотопом азота Ы , и через различные промежутки времени определяли количество включившегося в аминокислоты, белки и хлорофилл. Первые опыты показали, что аминокислоты и белки в растениях обновляются очень интенсивно. Например, в молодых растениях овса через 24 часа хлорофилл обновлялся на 27%, запасные белки на 25%, а конституционные белки, -составляющие структурную основу протоплазмы, —на 53%. Через 48 часов. хлорофилл обновлялся на 58%, запасные белки на 37%, консгитуционные белки на 63%, а через 3—5 суток все белки молодых растений овса обновлялись практически полностью. На более поздних фазах развития или при выращивании растений в условиях недостатка калия интенсивность обновления белков была более низкой. Последующие исследования в основном подтвердили эти данные о высокой скорости обновления белков в растениях. [c.302]

    Свободные аминокислоты наряду с белками и другими примесями экстрагируют из тканей водой, а белки удаляют, осаждая их трихлоруксус-ной кислотой, фосфорновольфрамовой кислотой, хлорной кислотой и различными другими реактивами. Проще, однако, экстрагировать ткани 80-процентным этанолом, растворяющим аминокислоты и прочие низкомолекулярные соединения. Большинство белков при этом осаждается, хотя некоторые белки семян, а возможно, и другие белки растворимы. Затем аминокислоты выделяют на ионообменных смолах. В методике, приведенной ниже, амины и основные аминокислоты адсорбируют на смоле дауэкс 50 (ионообменная сульфосмола) в аммонийной форме, а другие аминокислоты — на этой же смоле в водородной форме. Тем самым достигают частичного разделения аминов и аминокислот. Если нет надобности отделять амины и основные аминокислоты от остальных аминокислот, можно ограничиться адсорбцией только на смоле дауэкс 50 в водородной форме. [c.529]

    Окислительное дезаминирование аминокислот и восстановительное аминизирование а-кетокислот. В организме человека и животных в основном происходит окислительное дезаминирование аминокислот. Этот процесс катализируется оксидазами Ь- и 2)-аминокислот с простетиче-скими группами соответственно ФМН и ФАД. Окислительное дезаминирование аминокислот связано с пероксисомами. В тканях активны оксидазы /)-аминокислот при физиологических значениях pH. Однако в клетках млекопитающих О-аминокислот нет. Роль оксидаз 1)-амино-кислот до конца не понятна. Предполагают, что эти ферменты могут быть необходимы 1) для обезвреживания /)-аминокислот, случайно проникших во внутреннюю среду организма 2) при развитии опухолей возможно появление 1)-аминокислот в тканях, а следовательно, появление аномальных белков после включения -аминокислот в первич- [c.248]

    Наряду с основными в состав отдельных белков входят другие аминокислоты — неосновные. Каждая такая аминокислота происходит от одной из 20 основных аминокислот. Например, 4-гидроксипролин и 5-дигидро-ксилизин являются производными прелина и лизина и входят в состав коллагена — белка соединительной ткани  [c.228]

    Аминокислотный анализ исследуемого белка, проведенный на анализаторе аминокислот JL -3B фирмы JEOL, свидетельствует о явном преобладании в нем основных аминокислот (лизина, гистидина и аргинина). Сумма этих аминокислот в два раза превышает содержание дикар-боновых аминокислот. По аминокислотному составу выделенный белок практически идентичен энцефалитогенному белку, полученному другими авторами из ткани головного и спинного мозга (Паллад1н и др., 1970). [c.25]

    Сходство путей метаболизма в различных видах — один из основных принципов биохимии. Классические исследования, посвященные спиртовой ферментации дрожжей и образованию молочной кислоты в тканях млекопитающих, показали, что эти два процесса по существу протекают одинаково и отличаются лишь конечными стадиями, когда в дрожжах происходит анаэробное декарбоксилирование пирувата, а в мышечной ткани — нет. И в том, и в другом процессе НАД восстанавливается, а энергия накапливается в виде АТФ. Последние исследования других биологических механизмов образования, накопления и передачи энергии выявили некоторые интересные различия между видами, например наличие нескольких путей диссимиляции сахаров в бактериях, но все же наблюдается удивительное сходство этих механизмов. Многие промежуточные соединения одинаковы для всех видов. В живых клетках в качестве аккумулятора энергии всегда используется АТФ. Никотииамиднуклео-тиды участвуют во многих реакциях с переносом электрона триозофосфаты всегда участвуют в гликолизе. Белки, являющиеся основой живых организмов, во всех исследованных видах состоят приблизительно из 20 аминокислот. Эти аминокислоты, по-видимому,. в целом ряде организмов синтезируются одинаково, хотя точно установлено наличие двух путей в случае лизина. При этом высшие растения и бактерии используют различные пути, а грибы — оба. Это интересно при прослеживании эволюционных линий по био- [c.234]

    Одним нз основных объектов хрОхматографии на бумаге явились с самого начала различные аминокислоты, пептиды и белки. На примере разделения аминокислот была разработана техника распределительной хроматографии отбор проб для анализа, получение и проявление хроматограммы, состав растворителей, и установлена определенная зависимость между структурой аминокислоты и их хроматографическими характеристиками при различном химическом составе и соотношении растворителей в их смеси. Было изучено разделение различных производственных аминокислот, комплексных соединений с катионами металлов, определение аминокислот в микробиологическом материале, после гидролиза, в растительном материале, в тканях животных, в крови, плазме, сыворотке крови, кровяных тельцах, моче, лимфе, эксудатах, спинномозговой жидкости, жидкости глазной камеры, желудочном соке, сперме, молоке, в органах, мускулах, в насекомых, животных, хромозомах, нуклеопротеинах, гисто-нах, протаминах, кератине, при различиях в группах крови и в других объектах. Хроматография помогла также при изучении энзиматических реакций и метаболизма аминокислот, галогени-рованных аминокислот и в других случаях. [c.202]

    По длине пептидных цепей гормоны гипофиза значительно различаются между собой. Некоторые из них относятся к белкам среднего молекулярного веса. Например, гормон роста человека имеет мол. вес. 21 500 и характеризуется высокой специфичностью гормоны роста из других источников не могут его заменять. Гормон, стимулирующий функцию щитовидной железы (тиреотропии, ТТГ), представляет собой гликопротеид с мол. весом 28 000. С другой стороны, гормоны нейрогипофиза (задней доли гипофиза) вазопрессии и окситоцин являются простыми пептидами, построенными всего лишь из 9 аминокислотных остатков (собственно, из восьми, если считать цистин одной аминокислотой рис. 2-2). Как указывает уже само название, нейрогипофиз состоит из нервной ткани, секреторная функция которой находится под непосредственным контролем центральной нервной системы. Вазопрессии является основным фактором, регулирующим объем циркулирующей крови и артериальное давление на уровень секреции этого гормона оказывает влияние стресс. Окситоцин действует на гладкие мышцы матки при родах, а также служит триггером лактации. Выделение молока из молочных желез в определенной мере зависит от сосательных движений младенца, под влиянием которых происходит рефлекторное высвобождение окситоцина в кровоток. [c.321]

    Аминокислоты как основные составные части белков участвуют во всех жизненных процессах наряду с нуклеиновыми кислотами, углеводами и липидами. Кроме аминокислот, входящих в состав белков, живые организмы обладают постоянным резервом свободных аминокислот, содержащихся в тканях и в клеточном соке. Они находятся в динамическом равновесии при многочисленных обменных реакциях. Аминокислоты используются в биосинтезе полипептидов и белков, а также в синтезе фосфатидов, порфи-ринов и нуклеотидов. [c.10]

    Тканевое дыхание и биологическое окисление. Расиад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к вьщелению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом  [c.306]

    Остальные процессы при созревании мяса связаны с глик зом — превращением гликогена в молочную кислоту, денат цией и протеолизом, частичным распадом в основном саркоп менных белков до пептидов и аминокислот. Эти процессы п( кают при О °С и усиливаются при повышении температуры, приводит к размягчению ткани и улучшению органолептиче свойств мяса. В настоящее время доказано, что процессы гл лиза и протеолиза носят ферментативный характер (белки сс нительных тканей не подвергаются протеолизу). [c.166]

    Основные научные работы посвящены биохимии белков. Изучал роль эритроцитов в транспорте и обмене аминокислот, роль белков в питании, аминокислотный состав тканевых белков при различных физиологических и патологических состояниях. Выдвинул теорию, согласно которой в основе злокачественного роста тканей лежиг аномальный синтез белков. Принимал участие в бальзамировании тела В. И. Ленина. Возглавлял группу советских ученых, бальза- [c.197]

    Добавление некоторого ограниченного числа нуклеотидных единиц к концу молекулы имеющегося полирибонуклеотида не может рассматриваться как полинуклеотидный синтез. Тем не менее эта реакция близка к нему, имеет большое значение и хорошо сейчас изучена. В 1956 г. было показано, что в присутствии фосфорилирующей системы Р -аденозин-5 -мопофосфат целиком включается в РНК в цитоплазме печени крыс [149]. После гидролиза диэстеразой змеиного яда был получен меченый 5 -АМФ, а после щелочного гидролиза — меченые цитидип-2 - и цитидин-З -монофосфаты. Это говорит о том, что в РНК АМФ преимущественно присоединяется к ЦМФ. Подобные наблюдения на различных биологических объектах были проведены многими исследователями. Эти данные наряду с данными о том, что основная часть включенного аденина освобождается после щелочного гидролиза в виде нуклеозида, свидетельствуют о том, что АМФ присоединяется к концу цепи РНК. На важность этих наблюдений впервые обратили внимание Замечник, Хоглэнд и их сотрудники [150—152] в Бостоне, работавшие с растворимой, т. е. транспортной, РНК (s-PHK) цитоплазмы печени крысы. s-PHK отличается от РНК рибосом или микросом своеобразной способностью акцептировать нуклеотиды, присоединяясь к ним своей концевой группой, Такое присоединение нуклеотидов к концу цепи РНК обязательно предшествует прикреплению аминокислот в процессе биосинтеза белка. Все s-PHK из тканей животных, дрожжей и бактерий ведут себя в этом отношении одинаково. [c.251]

    Физиологическая роль протеолитических систем желудочно-кишечного тракта ясна с помощью этих ферментов принятые с пищей белки подвергаются гидролизу, в основном, вероятно, до составляющих их аминокислот. Протеолитические ферменты некоторых микроорганизмов обеспечивают способность последних к инвазии животной ткани. Такова, например, функция кол-лагеназы у некоторых спороносных анаэробов lostridia). Установлено, что превращение фибриногена в фибрин в крови млекопитающих катализируется протеолитическим ферментом, отщепляющим от фибриногена пептид (стр. 79). Внутриклеточные протеолитические системы, вероятно, катализируют распад белков в клетке. Ряд исследований посвящен вопросу о возможном участии этих ферментов также и в синтезе пептидных связей реакции, представляющие обращение гидролиза таких связей, осуществлены при помощи различных ферментных препаратов. [c.260]

    Основным источником азота для организма человека и животных являются белки, которые составляют основу покровных, соединительных, опорных, мышечных тканей, входят в состав клеточных мембран, участвуют в регуляции процессов жизнедеятельности. Белки гидролизуются в пишевари-тельном тракте до аминокислот и служат для создания собственных белков организма. Молекулы большинства природных аминокислот, входящих в состав белков, имеют общую формулу НаМ—СНК—СООН, т. е. представляют собой -аминокислоты [1]. [c.228]

    В основном поиски противораковых препаратов ведутся среди алкилирующих метаболитов. Метаболиты — вещества, участники норм1ального обмена в клетке белки, аминокислоты, компоненты нуклеотидов, обладающие цитотоксическими (убивающими) свойствами, они изменяют химический состав раковых клеток и подавляют или приостанавливают их рост. Эти исследования чрезвычайно сложны, ибо отсутствуют объективные данные о причинах и первичном механизме образования раковых клеток . Отличие опухолевых клеток от нормальных до сих пор с определенностью не установлено и тем самым воздействие на опухолевую ткань является очень сложным. Большинство предлагаемых противоопухолевых препаратов имеет более или менее выраженное побочное влияние на различные органы или систему органов. Большое разнообразие требований, которым должны удовлетворять химиотерапевтические препараты, привело к тому, что из большого количества синтезированных соединений только два — допан и сарколизин — оказались весьма эффективными при лечении некоторых форм опухолей человека и прочно вошли в клиническую практику. [c.447]

    РИБОНУКЛЕАЗЫ (РНК-азы) — ферменты, катализирующие гидролитич. расщепление рибонуклеиновых к-т на олиго- и мононуклеотиды. Р. широко распространены в природе и присутствуют во всех исследованных тканях. Наиболее изучена панкреатическая Р., секретируемая поджелудочной железой [систематич. название полирибонуклеотид — 2-олиго-нуклеотидо-трансфераза (циклизующая) шифр 2.7.7.16 — см. Номенклатура и классификация ферментов]. Р., выделенная в кристаллич. виде из поджелудочной железы быка экстракцией разведенной серной к-той с последующим фракционированием (NH4)2S04 — белок основного характера (р/ 7,8) с мол. в. 13 ООО. Установлена природа и последовательность аминокислотных остатков, входящих в состав Р., и выяснены существенные детали ее пространственной структуры, что дало возможность воссоздать трехмерную модель этого белка. Молекула панкреатич. Р. представляет собой одинарную полипептидиую цепь, состоящую из 124 аминокислотных остатков N-концевой аминокислотой в молекуле Р. является лизин, С-концевой — валин. [c.337]

    В целом органическое вещество океана А. П. Виноградов [58] характеризует как углеводопротеиновый комплекс. В его Составе за последние годы обнаружены разнообразные индивидуальные органические соединения. Среди них до 0,5 мг/л составляют органические кислоты, такие как уксусная (до 0,26 мг/л), муравьиная (до 0,68 мг/л), яблочная, лимонная, пальмитиновая, лауриновая, тетрадеценовая, линолевая, стеариновая и др. Содержание аминокислот достигает 45,7 мкг/л [175]. В воде обнаружены также пектиновые вещества, уроновые кислоты, углеводы, белки, полисахариды, липиды и др. Все эти индивидуальные органические соединения образовались в процессе жизнедеятельности организмов и при посмертном разрушении их тканей. В неглубоких морях (до 200—400 м) органическое вещество не успевает разложиться непосредственно в морской воде и, осаждаясь, достигает дна бассейнов, где в донных отложениях продолжается его превращение. Основная тенденция процесса биохимического разрушения и окисления органического вещества в океанической воде направлена к потере водорода, азота и фосфора и повышению содержания углерода, т. е. к образованию простых соединений с минимальным запасом свободной энергии. Однако, как отмечает А. П. Виноградов, не все органические вещества легко поддаются биологической обработке [c.29]

    Переаминирование есть основной процесс, вызывающий быстрый переход от одних аминокислот к другим. Этот процесс происходит в организме очень интенсивно и играет большую роль в круговороте аминокислот и получаемых из них белков. На стр. 377 механизм этой реакции был подробно рассмотрен. Наряду с ним, в небольшой степени переаминирование, по-видимому, может идти также по другому механизму окисления аминокислоты в аминокетокислоту, гидролитического отщепления от нее аммиака и присоединения последнего к другой аминокислоте. При этом механизме, в присутствии меченых групп N Hg, тяжелый азот должен переходить в образующуюся аминокислоту и в аммиак. Это обнаружил Шемин при действии гомогената сердечной ткани на смесь а-кетоглютаровой кислоты, бикарбоната аммония и Ы -аланина (или лейцина). Большая часть переходила в образующуюся глютаминовую кислоту, но некоторое его количество также оказалось в выделенном аммиаке. Этот механизм переаминирования, однако, отступает на второй план по сравнению с основным, идущим с промежуточным образованием оснований Шиффа. [c.492]


Смотреть страницы где упоминается термин Основные аминокислоты в белках тканей: [c.341]    [c.32]    [c.567]    [c.540]    [c.49]    [c.166]    [c.260]    [c.416]    [c.11]    [c.23]    [c.23]    [c.481]    [c.452]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.106 , c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты в тканях

Белки тканей содержание основных аминокислот

Основные аминокислоты в белках



© 2025 chem21.info Реклама на сайте