Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательные

    При возбуждении молекулы в ней происходят сложные энергетические изменения (рис. 89) электроны переходят с одного уровня на другой, одновременно изменяется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейчатых спектров атомов. [c.144]


    Спектры молекул значительно сложнее, чем спектры атомов, и состоят не из отдельных линий (см. рис. 6), а из полос (рис. 88). Сложность молекулярных спектров обусловлена тем, что в молекуле наряду с движением электронов относительно ядер происходит колебательное движение самих ядер и вращательное движение молекулы как целого. Этим трем видам движения — квантовым переходам — соответствуют электронный, колебательный и вращательный спектры (см. табл. И). [c.143]

    Поглощение излучений низких энергий (ИК) приводит к изменению лишь вращательной или колебательной энергии молекул, поглощение излучений УФ и видимого участков спектра вызывает изменение также энергии электронов, в результате чего происходит переход электронов главным образом внешних энергетических уровней в возбужденное состояние. [c.459]

    Дебай и Гюккель приняли основную идею Гхоша о кристалло-подобиом распределенпи ионов в растворе. Однако в растворах попы в результате теплового движения располагаются вокруг любого иона, выбранного в качестве центрального, в виде сферы. Так как в растворе преобладает поступательное движение (а не колебательное, как в крпсталла.х), ноны, входящие в состав сферы, окружающей центральный ион, непрерывно обмениваются местами с другими ионами. Такая статистическая сфера называется ионной атмосферой. Все ионы раствора равноценны, каждый нз них окружен ионной ат.мосферой, и в то же время каждый центральный иоп входит в состав ионной ат1 шс( зеры какого-либо другого иона (рпс. 3.2). Существование ионных атмосфер и есть тот характерный признак, который, по Дебаю и Гюккелю, отличает реальные растворы электролитов от идеальных. [c.83]

    Ионизирующее излучение (гамма- и рентгеновские лучи) обладает такой энергией, что способно выбить из молекулы электроны с образованием ионов. Инфракрасное излучение обладает низкой энергией и при взаимодействии с молекулами вызывает колебательные и вращательные эффекты. Электромагнитное излучение в близкой ультрафиолетовой и видимой областях спектра (240—700 нм) взаимодействует с электронами молекулы. Ниже 240 нм ультрафиолетовый участок спектра задерживается озоном иа уровне 20—30 км от Земли. При поглощении света с длиной волны менее 800 нм изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию молекул. [c.26]


    Дополнительное преимущество этого процесса заключается в том, что устраняется необходимость нагрева исходного сырья до высокой начальной температуры, требуемой для протекания реакции. При осуществлении процесса в результате колебательного движения взвешенных зерен катализатора происходит интенсивное перемешивание и достигается практически идеальный теплообмен между поступающей свежей газовой смесью и горячими газообразными продуктами реакции, обеспечивающий достаточный нагрев исходной газовой смеси. Именно в этом свойстве и заключается особенность взвеси твердой фазы. Каталитическая активность твердой фазы проявляется лишь в первые часы работы (до графитирования зерен катализатора), а при длительной работе практически полностью отсутствует. Именно поэтому рассматриваемый метод хлорирования следует отнести к группе термических процессов. [c.170]

Рис. 89. Схема электронных, колебательных и вращательных энергетических уровней двухатомной молекулы Рис. 89. <a href="/info/480291">Схема электронных</a>, колебательных и <a href="/info/3559">вращательных энергетических</a> уровней двухатомной молекулы
    Если изобразить зависимость и Г от времени, функции ( ) и Т 1) будут такими, как на рис. VII.16. Здесь О — начальная точка ( (0), Т (0)), и как температура, так и степень полноты реакции сначала возрастают. Температура достигает максимума в точке Р, а степень полноты реакции увеличивается вплоть до точки Q, после чего начинает падать. Тем временем скорость падения температуры снижается и температура достигает минимума в точке К. Таким образом, и Г приближаются к стационарному состоянию путем затухающих колебаний. Такому поведению решений должно соответствовать устойчивое стационарное состояние с комплексно сопряженными корнями. В других случаях, когда корни действительны, приближение к стационарному режиму не будет колебательным. [c.176]

    В АГВ происходит множество колебательных процессов, вызывающих изменение давления в полостях аппарата и различающихся как по частоте, так и по амплитуде. Эта колебания возникают из-за различных по физической природе причин, [c.85]

    Таким образом, в АГВ из-за очередного совмещения и перекрытия прорезей возникает колебательный процесс единой природы. В его частотно-амплитудном спектре максимум амплитуды соответствует частоте /о и, в зависимости от соотношения Zr/Zs, перераспределение энергии по гармоникам таково, что следую- [c.86]

    Критерий сепарации гармоник колебательного процесса (kg = Zs/n). С помощью этого критерия достигается целенаправленное перераспределение энергии по гармоникам, составляющим колебательный процесс. Появляется возможность создавать заданное воздействие на целевой технологический процесс. [c.98]

    ЦБ. Неупругие столкновения. Под неупругими столкновениями подразумеваются такие столкновения, при которых изменяется общая поступательная энергия системы. Прирост или убыль поступательной энергии должны, конечно, компенсироваться другими изменениями в сталкивающихся системах. Чаще всего при этом изменяется вращательная или колебательная энергия. В исключительных случаях может происходить изменение электронной энергии. [c.149]

    ИВ. Обмен колебательной энергией. Рассмотрим лобовое столкновение. атома с молекулой, когда центры всех трех частиц находятся на одной прямой. Схематически такое столкновение показано на рис. VII.10. [c.151]

    Доля энергии, превращающейся в колебательную, АЕ /Ес, следовательно, равна разности между АЕ /Е и поступательной энергией, полученной АВ  [c.151]

    Для квантовомеханического осциллятора, в котором уровни энергии отстоят друг от друга на величину, значительно большую кТ, будут эффективными только те столкновения, при которых изменение колебательной энергии близко к hv, где v — частота осциллятора. Это накладывает еще большие ограничения на возможность неупругого превращения энергии. [c.153]

    О, так что I 1 ц I = I г>с , то 40% поступательной энергии не может переходить в колебательную энергию. [c.153]

    Рассмотрим очень простой пример молекула идеального газа в кубическом ящике с ребром I может иметь только те значения поступательной энергии, которые удовлетворяют уравнению Ег = (1г /8т1 ) (и 4- у + + п1), где /г — постоянная Планка, т — масса, а п , Пу, — числа, которые могут быть только целыми (1, 2, 3 и т. д.). Б этом случае говорят, что поступательная энергия квант.уется. Аналогичные виды ограничений накладываются на вращательную и колебательную энергии в сложных молекулах. [c.183]

    В пидимой и ультрафиолетовой областях спектра. Энергии колебательных переходов (10 1—10 эВ) соответствует излучение (поглощение) в ближней инфракрасной области. Наименьшую величину имеют энергии вращательных переходов молекул (10 —10 эВ)  [c.144]

    Колебательная сумма по состояниям 185 [c.185]

    Полученный результат снова соответствует (за исключением константы /г) классическому результату. Когда /гvo > кТ, экспонента стремится к нулю и колебательная сумма по состояниям становится равной [c.185]


    Из этого последнего вывода следует, что молекулы при таких температурах фактически замерзают в своем нижнем колебательном состоянии (г =0). [c.185]

    В случае сложных молекул можно проанализировать колебательное движение ядер в совокупности так называемых нормальных координат, так что в первом приближении можно представить общую колебательную энер- [c.185]

    При этих условиях колебательная сумма по состояниям для независимых молекул равна [c.186]

    О (обш ую) можно представить как произведение внутренних электронной, колебательной и вращательной сумм по состояниям  [c.221]

    Демпферы представляют собой полые алюминиевые цилиндры, закрытые крышкой сверху и открытые снизу. Они подвешены при помощи крючков к сережкам и находятся, таким образом, над обеими чашками весов (в демпферных весах других систем демпферы иногда помещены под чашками весов). Демпферные цилиндры входят внутрь двух других алюминиевых цилиндров немного большего диаметра, открытых сверху и закрытых снизу. Эти цилиндры укреплены неподвижно на колонке весов. При опускании арретира вместе с коромыслом весов и чашками в колебательное движение приходят и демпферные цилиндры, которые вдвигаются внутрь наружных цилиадров или выдвигаются из них, благодаря чему создается воздушное торможение, почти сразу останавливающее колебания весов. При этом стрелка весов застывает II определенном положении, отвечающем нулевой точке (или точке равновесия, если весы нагружены). [c.31]

    Причем роль катализатора выполняет металл электрода. Кобозев предположил, что в силу специфики электрохимического процесса, при котором адсорбированные атомы водорода высаживают принудительно током на любых точках к.атода (в том числе и на участках с малой теплотой адсорбции), наряду с образованием обычных молекул в продуктах электролиза возможно доявление колебательно возбужденных молекул водорода Н2 1 избыточным запасом энергии  [c.404]

    Инфракрасная спектроскопия (ИКС). С помощью инфракрасных лучей исследуют колебательный спектр молекул. Частоту колебаний определяют главным образом масса колеблющихся атомов и их груп-[шровок и жесткость химической связи. Последняя характеризуется так называемой силовой постоянной к, выражаемой в Н/м. [c.146]

    Поглощение звука определяет воздействие на свойства вещества на субстанциональном уровне [361, 375]. Взаимодействие звука с веществом имеет своим продуктом то же вещество, но с заметно измененными свойствами. Это изменение происходит под действием температурной, концентрационной и гидродинамической нелинейностей [221]. Причина нелинейных эффектов заключается в перераспределении энергии меж у внеишими (поступательными и вращательными) и внутренними (колебательными) степенями свободы молекул (кнезеровский эффект) [361]. [c.49]

    При исследовании схем совмещения использован метод электродинамического моделирования. Этот метод позволяет исключить искажения изучаемых колебательных процессов, которые всегда присутствуют в натурных АГВ. Был использован специально сконструированный для этого стенд электродинами- [c.87]

    Когда объем, занятый акустическим полем, ограничен жесткими стенками, расстояние между которыми (у), и между ними устанавливается стоячая акустическая волна длиной (Я.), то возникает однонаправленное течение Релея. Пространственный масштаб этого течения ограничен длиной (Х/4) и толщиной (у/2). Скорость потока определяется квадратом амплитуды колебательной скорости, и время на границе не зависит от вязкости среды. [c.163]

    Эта система хорошо себя зарекомендовала в основном при выпаривании очень вязких жидкостей (до 20 000 спз) и для сгущения растворов твердых веществ. Лопатки или жестко укрепляются на валу (фиг. 148, а, система Luwa), или выполняют колебательные движения (фиг. 148, б, система Sumbay). [c.237]

    Этот метод применим при измерении скорости перехода колебательной или вращательной энергии в энергию поступательного движения. См. разд. VII.11. Метод был впервые предложен Эйнштейном и применен к кинетической системе N204 N02 Ричардсоном. Более подробно см. [14  [c.64]

    Допущение, что скорость дезактивации не зависит от внутренней энергии, является до некоторой степени грубым. Имеется экспериментальное доказательство, что скорость потери колебательной энергии молекулой Ij при столкновении примерно в 100 раз больше для высоко возбужденных состояний, чем для более низких энергетических состояний. Ельяшевич [4], Мотт и Массей [5] сделали приближенные квантовомеханические расчеты, которые указывают, что при соударении с атомом потеря или приобретение кванта колебательной энергии гармоническим осциллятором пропорциональна энергии осциллятора. Другая работа по этой проблеме заключалась в экспериментальном изучении дисперсии звука в газах. Эти измерения показали [6], что для самых низких вибрационных состояний величина Хо равна около 10 , но может сильно варьировать от газа к газу и сильно зависит от химической природы соударяющихся газов. [c.210]

    Модель жесткого шара не годится для описания неупругих столкновений, так как она предполагает, что молекулы могут обмениваться только поступательной энергией. Однако небольшое изменение модели дает возможность учесть враш,ательную энергию. Для этого нужно ввести коэффициент шероховатости (0<<2г<1), который определяет величину тангенциальной силы, действующей во время столкновения двух жестких сферических молекул. Для учета колебательной энергии, вводится допуще- [c.149]

    В этом случае сила F взаимодействия двух сталкиваюш ихся частиц В и С друг с другом будет иметь составляющие F и (по отношению к оси а ав двухатомной молекулы). Составляющая F может изменить только вращательную энергию этой пары, а продольная составляющая F изменяет колебательную энергию двухатомной молекулы.  [c.150]

    Этот анализ, конечно, значительно упрощен в течение медленного столкновения Ец измепяется от своего первоначального значения через максимум (если имеется сила отталкивания) до нуля и затем обратно через новый максимум до своего конечного значения. В течение всего этого времени состояние осциллятора также меняется от первоначального до конечного. Величина (Ец) составляет около половины первоначальной величины Ец. Для квантовомехапнческой системы дополнительное условие квантования колебательных уровней делает вышеприведенный метод анализа неприемлемым. [c.153]

    Это, конечно, справедливо только для классического осциллятора, который может иметь непрерывный ряд колебательных энергий. Даже и в этом случае вероятность-обмена надает нри /iVi Ец см. уравпеиие (VII.11 В.9)]. [c.153]


Смотреть страницы где упоминается термин Колебательные: [c.163]    [c.46]    [c.60]    [c.127]    [c.175]    [c.182]    [c.48]    [c.49]    [c.86]    [c.99]    [c.152]    [c.184]    [c.185]   
Химия твердого тела Теория и приложения Ч.2 (1988) -- [ c.95 ]




ПОИСК







© 2025 chem21.info Реклама на сайте