Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Максвелла упругости

    Элемент Максвелла (упругая деформация плюс течение) образуется соединенными последовательно пружиной и цилиндром с порш-нe] f. Эта модель описывает свойство такого материала, который упруго реагирует на нагрузку, но может также течь. В этой модели два вклада в деформацию подчиняются закону аддитивности [c.173]

    Помимо вязкости при деформации жидкости определенное значение имеет введенное Максвеллом понятие времени релаксации tp, равное соотношению т]/е, где Т1 — вязкость, а е — модуль упругости. Уравнение деформации Максвелла удобно выразить в форме [c.267]


    Нагруженный бандаж — статически неопределимая конструк ция (рис. 12.21, а). Неопределимость раскрывают любым способом (интеграл Максвелла —Мора, теорема Кастильяно, метод упругого центра). По результатам расчета строят эпюру изгибающих моментов на бандаже (рис. 12,21, 6). Эпюра симметрична относительно вер тикальной оси при угле 2гр = 60° изгибающий момент в месте контакта с опорными роликами, т. е. при а = 150° и а = 210°, дости- [c.382]

    Обратимую деформацию Уу иногда условно разделяют на две составляющие исчезающую практически мгновенно и исчезающую в течение некоторого времени (упругое последействие). Для многих процессов, протекающих относительно медленно, такое разделение не имеет смысла и для определения у используют обычную форму уравнения Максвелла [c.10]

    Так, последовательное сочетание упругого и вязкого элементов дают модель Максвелла, иллюстрирующую свойства упруго-вязкого тела, учитывающего упругие свойства жидкости. Схема модели приведена на рис. 62, а, а на рис. 62,6 представлена зависимость деформации для этой модели от времени действия нагрузки. [c.199]

    Известны и более общие модели. Например, последовательное соединение М01[елей Максвелла и Кельвина — Фойгта (рис. 65, а) позволяет смоделировать систему, обладающую упругой деформацией, упругим последействием, а также способностью к ре- [c.200]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Если система ведет себя так, что в ней как бы суммируются упругая деформация и вязкое течение, то ее эквивалентной схемой служит последовательное соединение упругости G и вязкости т] (так называемая модель Максвелла, рис. 4, а). Типичное проявление такого сочетания — это релаксация спад) напряжений по закону [c.310]

    Тело Максвелла (рис. VII.3, а) представляет собой модель вязкоупругой жидкости. Примером такой жидкости является полиизобутилен. Если мгновенно вызвать деформацию величиной (например, переместить цилиндр до упора О) н далее удерживать ее постоянной, то в первый момент времени эта деформация будет целиком обусловлена растяжением пружины, поскольку упругая часть деформации Уу — не требует для своего раз- [c.183]

    Следовательно, в одной и той же жидкости при (т/0) < 1 наблюдается вязкое течение, а при (т/0)>1—упругая деформация. Это явление известно со времен Максвелла, который предложил з а-кон релаксации напряжения вида [c.42]

    Некоторыми исследователями [11.9] термодинамический подход к разрушению осуществляется формально без выяснения природы механических потерь. Процесс разрушения рассматривается на основе реологических моделей Кельвина, Максвелла и др. причем критерием разрушения является достижение упругой энергией (в общем случае внутренней энергией) некоторого предельного значения, что сближает механический подход, рассмотренный выше, с термодинамическим подходом. [c.287]

    Вследствие упругих соударений молекул газа между собой, а также о стенку сосуда они постоянно меняют скорость и направление движения. В соответствии с теоремой Максвелла в течение некоторого промежутка времени все молекулы независимо от их массы имеют кинетическую энергию, мало отличающуюся от среднего значения (закон равномерного распределения по энергиям). Суммарное воздействие всех молекул на стенку проявляется как давление газа. [c.18]

    Предложен ряд уравнений, описывающих деформацию систем, способных релаксировать. Наиболее простым является уравнеиие Максвелла, вытекающее из его теории упруго-вязкого тела  [c.332]

    Экспериментальные данные, полученные при измерении релаксации, часто описывают с помощью реологических моделей. Широко используется модель Максвелла, состоящая из пружины и демпфера, соединенных последовательно (рис. 8.2). Пусть образец подвергнут быстрой деформации растяжения (сжатия) в возможно короткое время /о и созданная при этом деформация ео зафиксирована. При этом в полимере возникнет напряжение а. Первым следствием действия напряжения является упругая деформация. [c.123]

    Запаздывающая упругая реакция полимера на действующее усилие в условиях ползучести может быть описана моделью Кельвина—Фойхта, в которой в отличие от модели Максвелла пружина и демпфер соединены параллельно (рис. 8.2,6). При нагружении этой модели деформация пружины и смещение демпфера одинаковы, а напряжения в ветвях модели различны  [c.125]

    В опыте по релаксации напряжения в растянутом образце, как мы видели, эластическая обратимая деформация со вре.менем переходит в вязкотекучую, необратимую. Полностью обратимая деформация развивается в идеально упругой стальной пружине, а полностью необратимая деформация развивается при нагружении поршня, помещенного в идеальную жидкость. Последовательное соединение пружины и поршня является простейшей моделью вязкоупругого тела (рис. 9.2). Эта модель носит название модели Максвелла (по имени ее создателя). [c.120]

    На рис. 9.5 показана кривая ползучести для модели Максвелла (с последующим сокращением образца после нагрузки). Видно, что модель Максвелла не отражает основной особенности кривой ползучести — наличия участка замедленного развития упругой деформации. В реальном полимере упругая деформация развивается не мгновенно, как в пружине, а замедленно, так как перемещение сегментов тормозится вязким сопротивлением среды. [c.123]

    Ползучесть линейного полимера хорошо описывается также объединенной механической моделью, сочетающей модель Максвелла и модель Кельвина — Фойхта (рис, 9.8). На рис. 9.9 показаны кривая ползучести и кривая упругого последействия, построенная в соответствии с объединенной моделью. К моменту времени / общая деформация складывается из мгновенно упругой (пружина, 1-й элемент), замедленно упругой, эластической (2-й элемент) и необратимой вязкой (3-й элемент, поршень)  [c.124]

    Изучение свойств газов привело к кинетической теории газов. Согласно кинетической теории газ представляют как совокупность атомов или молекул, находящихся в движении. Атомы или молекулы движутся по прямым линиям, сталкиваются друг с другом и со стенками сосуда, меняя свое направление по закону столкновения упругих тел, — угол падения равен углу отражения. Молекулы движутся с различными скоростями (закон распределения скоростей Максвелла). Наибольшими средними скоростями обладают молекулы самых легких газов. Для водорода, например, средняя скорость при 0° С 1698 см сек. Скорости молекул других простых и сложных газов составляют приблизительно 400—300 см сек. Удары движущихся молекул о стенки сосуда обусловливают давление газов. [c.125]


    Максвелл Джеймс Клерк (1831 —1879)—английский физик, создатель классической электродинамики, один из основателей статистической физики. Основные труды в области электромагнетизма, кинетической теории газов, оптики, теории упругости и др. [c.222]

    Рассмотрим модель (тело Шведова — Максвелла), представляющую собой последовательное соединение пружины и порщня с отверстиями, помещенного в вязкую жидкость (рис. 106, а). Приложение к системе постоянного усилия приводит вначале к мгновенной упругой деформации пружины (е = 1Е), а затем к равномерному движению всей модели [с1г/сИ = /т), согласно (XIV. 3)], определяемому вязким сопротивлением. Зависимость е от 1, изображенная на рис. 106,6, описывается суммарным уравнением, следующим из уравне- [c.276]

    Интересно отметить, что при кратковременных воздействиях реологические свойства моделей обращаются, а именно тело Максвелла ведет себя как упругий материал (поскольку не успевают возникнуть остаточные деформации) тело Кельвина — как вязкая жидкость (вклад упругих сил незначителен вследствие малости деформации). [c.272]

    Модель Максвелла — последовательное соединение упругости и вязкости (рис. XI—8). Последовательное соединение таких элементов означает, согласно третьему закону Ньютона, что на обе составные части модели действуют одинаковые силы (напряжения сдвига т), а деформации упругого уо и вязкого -у,, элементов складываются  [c.312]

    Принципиальные различия в механических свойствах твердых тел и жидкостей показаны Максвеллом почти сто лет назад. В основе этого представления лежит явление релаксации — постепенного рассеивания упругой энергии, запасенной в деформированном теле путем перехода ее в тепло. Процессы релаксации неразрывно связаны с хаотическим тепловым движением молекул тела. Как и тепловое движение, релаксация является универсальным самопроизвольным процессом, протекающим во всех реальных телах без внешнего воздействия. Период релаксации, или время, в течение которого упругое напряжение спадает на определенную величину, отличен у разных тел. Так, у твердых тел по сравнению с обычным временем наблюдения или опыта он очень велик, а у жидкостей, наоборот, мал. [c.8]

    Отличие данных моделей в том, что для тела Максвелла складываются деформации вязкого и упругого элементов, а для тела Кельвина-Фойгта складываются напряжения сдвига. Поэтому при постоянной деформации в теле Максвелла наблюдается релаксация напряжений, а в теле Кельвина-Фойгта при постоянном напряжении сдвига наблюдается рост деформации (упругое последействие) [63]. [c.49]

    Оценка упругих свойств жидкостей зачастую оказывается более сложной экспериментальной задачей, чем определение вязкостных характеристик. Прямое определение характеристик сдвиговой упругости требует специального реологического оборудования, позволяющего исследовать процессы релаксации в жидкости, например, с помощью осцилляторного метода. Поэтому часто пользуются косвенными методами, например, методом Кросса, позволяющим получить основную характеристику упругости - модуль сдвиговой упругости о. Область применимости данного метода, однако, ограничена жидкостями, подчиняющимися уравнению Максвелла (2.10). [c.54]

    Таким образом, согласно модели Максвелла упругость жидкости подчиняется закону Гука, а вязкость — закону Ньютона Об- [c.124]

    Механо-реологические свойства в общем случае зависят от времени и нелинейны. Сужая круг задач, ограничиваются постоянными во времени и линейными моделями. Реологические свойства могут быть фундаментальными и сложными [11]. Фундаментальными являются упругость, вязкость, пластичность и прочность. Сложные свойства представляют собой комбинацию фундаментальных свойств и модели, они отражают сложное поведение веществ, являются комбинацией фундаментальных (элементарных) моделирующих элементов. По предложению Мизеса идеализированным материалам и соответствующим им моделям и уравнениям присвоены имена ученых, которые впервые предложили эти модели (Гука, Ньютона, Максвелла и др.). [c.25]

    При исследовании механических свойств нефтяного кокса наибольший интерес представляет релаксационная теория [84, 226], основоположником которой следует считать Максвелла. Он предположил, что твердое тело представляет собою совокупность двух сред — идеально упругой, которая подчиняется закону Гука о пропорциональности деформации приложенному напряжению (силе), и вязкой среды, которая подчиняется закону Ньютона  [c.165]

    Так как т) и не равны нулю, модель Максвелла отражает и вязкие, и упругие свойства жидкости. Эта модель, одпако, ие предсказывает зависимости т и от скорости сдвига, хотя ее и можно модифицировать таким образом, чтобы такая зависимость появилась. Для элонгационного течения в рамках этой модели имеем следующее выралсе-ние для [c.171]

    На основе прочности фазовых контактов с валентными связями и межмолекулярных взаимодействий представляется возможным теоретически рассчитать прочность твердых тел. Однако, это весьма сложная задача, так как )езультаты расчета сильно искажаются из-за наличия дефектов, пористости и других причин. Предполагая, что твердое тело является совокупностью двух сред — идеально-упругой, которая подчиняется 1а-коиу Гука о пропорциональности деформации ириложенному напряжению, и вязкой, которая подчиняется закону Ньютона,— Максвелл предложил релаксационную теорию твердых тел, в соответствии с которой напряжение Ор зависит от деформации Бр и скорости деформации ( /вр/Л)  [c.178]

    В дисперсной системе, представляющей собой упруговязкое тело Максвелла, под действием нагрузки мгновенно развивается упругая относительная деформация, равная 400 %- Рассчитайте начальное нап])яжение в системе и промежуток времени, за которое оно умсгнь-шится в 100 раз. Модуль упругости и коэффициент ньютоновской вязкости системы составляют соответственно 500 Н/м и 50 Па-с. [c.208]

    При высоких температурах кристаллизации сферолиты могут вырастать до значительных размеров, так как число зародышей невелико, а скорость роста значительна. Такие надмолекулярные структуры, состоящие из более совершенных кристаллитов, обладают более высоким модулем упругости, отличаются повышенной хрупкостью и значительной оптической анизотропией. По данным Максвелла [1 ], трещины разрушения возникают в таких структурах в межсферолитных областях. [c.56]

    Уорс и Парнаби [68] рассмотрели влияние упругости расплава полимера на вид выражения Используя уравнение Максвелла, они нашли, что [c.492]

    При кратковременном действии сил реологические свойства тела Максвелла и Кельвина обращаются первое ведет себя как упругий материал, а второе как вязкая жидкость. Это обусловлено тем, что за малое время в первом не успевают развива1ься остаточные де( )ормации, пропорциональные времени, а во втором из-за малости деформации несуществен вклад упругих сил в общее сопротивление. [c.185]

    Определяя п из уравнения (IV. 13), для удобства записанного в логарифмической форме lgтl lg7, из соотношения (1У.16) находим V. Как показали такие определения, для большинства газов значения V лежат примерно в интервале 9—15, т. е. модель твердых упругих шаров, для которых v , в целом не отвечает действительности. Для некоторых газов значения V оказываются или меньше 9 или больше 15. Для удобства расчетов по формуле (IV. 12) входящая в нее функция /(V) прота-булирована для значений V, изменяющихся от 3 до с , функция f lv) изменяется от 0,807 до 1, т. е. незначительно. Таким образом, величина ат, рассчитываемая по формуле (1У.12), в основном определяется относительными молекулярными массами компонентов разделяемой смеси и множителем (V—5)/(v—1). Легко видеть, что при v = 5, ат = 0, откуда следует, что в смесях газов, для которых fм r) 1/г , явления термодиффузии не должно наблюдаться. Этим и объясняется известный вывод Дж. Максвелла о невозможности протекания термической диффузии в газах вообще им был рассмотрен случай с v = 5. [c.164]

    Г. Л. Слонимский (1938 г.) в статье О законах деформации реальных материалов делает попытку изложить теорию Максвелла и Больцмана — Вальтерра в применении к таким веществам, как каучук и другие материалы, отличающиеся от идеально упругих тел неравновесными процессами деформации. Начиная с 1935 г., стали появляться работы П. А. Ребиндера и В. Б. Маргаритова по физико-химии и механике каучука и резин, которые в 1937 г. вызвали большую дискуссию на страницах журнала Каучук и резина . Вместе с А. А. Трапезниковым П. А. Ребиндер изучил механические свойства адсорбционных слоев для поверхностно-активных, нерастворимых в воде веществ методом смещения подвешенного на нити диска. Механические свойства растут и достигают максимума при полном насыщении поверхностного слоя. Б. В. Дерягин и другие развили физическую теорию устойчивости дисперсных систем. [c.8]

    Модель Кельвина — параллельное соединение тех же линейных элементов — упругости и вязкости (рис. XI—10). В этом случае деформации обоих элементов одинаковы, а напряжения сдвига суммируются т = тс+т . Наиболее интересным режимом деформирования здесь является приложение постоянного напряжения сдвига т = = То = onst. В отличие от модели Максвелла, вязкий элемент не позволяет немедленно реализоваться деформации упругого элемента. [c.313]

    Наиболее интенсивным режимом деформирования здесь является приложение постоянного напряжения сдвига т = То = onst. В отличие от модели Максвелла, вязкий элемент не позволяет немедленно реализоваться деформации упругого элемента. В результате общая деформация лишь постепенно развивается во времени, и скорость ее описывается как [c.373]

    Экспериментально установлено, что при течении дисперсных систем в области неразрушенных структур имеет место наложение деформаций сдвига (принцип аддитивности). Применение модельного анализа для определения вида деформации е (т), при помощи которого условно заменяют данную реальную систему схемой последовательных и параллельных совокупностей идеально упругих и вязких или пластично-вязких элементов, позволяет в каждом отдельном случае ориентироваться в числе независимых характеристик механических свойств этой системы и проследить в полуколичественном соотношении с экспериментальными данными все основные деформационные и релаксационные свойства неразрушенных структур. Кривые е (т) многих дисперсных систем могут быть с достаточной точностью описаны при помощи последовательно соединенных моделей Максвел-ла — Шведова и Кельвина (рис. 4). Модель Максвелла — Шведова состоит из пружины с модулем i, последовательно связанного с ним вязкого элемента, моделирующего наибольшую пластическую вязкость t]i, который блокирован тормозом на сухом трении, моделирующим предел текучести Р х- Модель Кельвина содержит упругий элемент с модулем и параллельно связанный с ним задерживающий вязкий элемент (демпфер), моделирующий вязкость упругого последействия rjj. [c.20]

    Макроскопия ползучести. Реологические свойства твердых тел удобно описывать при помощи моделей, представляющих собой простое или сложное сочетание упругих (элемент Гука) и вязких (элемент Ньютона) элементов (рис. 80, а, б). Наиболее распространенной моделью является модель стандартного линейного тела (модель Зинера). Она представляет собой сочетание упругого элемента Гука с элементом Максвелла (рис. 80, в). Если допустить, что = О, модель Зинера переходит в модель [c.185]


Смотреть страницы где упоминается термин Максвелла упругости: [c.26]    [c.243]    [c.148]    [c.121]    [c.11]   
Переработка каучуков и резиновых смесей (1980) -- [ c.18 , c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Максвелл



© 2025 chem21.info Реклама на сайте