Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяка экстракционной

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]


    Экстракционный метод отделения мышьяка от сурьмы. При токсикологических исследованиях и других случаях бывает нужно перед броматометрическим определением мышьяка отделить его предварительно от сурьмы. Если мышьяк и сурьма находятся в высших степенях окисления (5+), то их восстанавливают до степени окисления 3- - сульфатом гидразина и затем экстрагируют бензолом. Обычно мышьяк может присутствовать в количестве от 0,5 мг до 6 мг в 10 мг смеси мышьяка и сурьмы (в виде окислов). [c.417]

    Используют также методы экстракционной и ионообменной очистки растворов. При экстракционной очистке растворов примеси извлекают экстрагентом, органическим веществом, которое не должно растворяться в очищаемом растворе. Так, например,, из растворов сульфата меди экстракцией трибутилфосфатом извлекают мышьяк. [c.253]

    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    Экстракционная фосфорная кислота, полученная с применением контактной серной кислоты, почти не содержит примесей свинца и мышьяка. В этом случае после обесфторивания кислоты (выпариванием или осаждением) из нее можно получать кормовой преципитат так же, как и из термической кислоты, смешением с известняком и высушиванием с ретуром готового продукта. [c.244]

    Для экстракционно-фотометрического определения мышьяка в виде мышьяковомолибденовой сини рекомендуется следующая методика [273]. [c.60]

    Для отделения мышьяка экстракция используется очень часто. В ряде случаев экстракционное отделение мышьяка непосредственно сочетается с его определением фотометрическими, атомно-абсорбционными и другими методами. Малая продолжительность и высокая избирательность экстракционных методов отделения мышьяка обеспечивают им широкое практическое применение. [c.121]

    Этан-1,2-дитиол так ке был рекомендован в качестве реагента для экстракционного отделения мышьяка(П1) [592]. [c.129]


    Часто используется метод определения мышьяка, основанный на его экстракционном отделении и последуюш,ем определении в виде мышьяковомолибденовой сини. [c.154]

    В ферровольфраме и вольфрамовых рудах мышьяк предложено [12031 определять экстракционно-фотометрическим методом в виде мышьяковомолибденовой сини. [c.161]

    Мышьяк в галлии определяют экстракционно-фотометрическим методом [285, 286, 288], основанном на образовании мышьяковомолибденовой сини, экстрагировании ее изоамиловым спиртом и измерении оптической плотности экстракта. Мышьяк предварительно отделяют от галлия экстракцией хлороформным раствором диэтилдитиокарбаминовой кислоты из сернокислого раствора. Чувствительность метода 1-10 % Аз. [c.161]

    Экстракционный способ. Часто применяется в аналитической химии. Таллий хорошо экстрагируется из слабокислых растворов (1—2 н.) в виде комплексных таллийгалогеноводородных кислот НТ1На14, что позволяет отделять его от таких элементов, как железо, галлий, сурьма и т. п., которые экстрагируются из более кислых растворов (5—6 н.) [151]. Предложено применять экстракцию для извлечения таллия из производственных растворов. В качестве экстрагента рекомендуется 10%-ный раствор трибутилфосфата (ТБФ) в керосине [210]. Раствор после очистки от железа и мышьяка подкисляют серной кислотой до концентрации 30 г/л таллий окисляется в Т1(И1) хлорной известью, которая одновременно вносит необходимый для экстракции ион СГ. Реэкстрагируют таллий из ТБФ 5%-ным раствором пирофосфата натрия, который связывает таллий в комплекс (pH раствора при этом должен быть 5—10). Во избежание гидролиза соединений таллия (П1) к реэкстракту добавляют 1 г/л (ЫН4)25 04. Далее реэкстракт подкисляют серной кислотой до 50 г/л. Таллий осаждается на цинковых листах в виде губки, которую промывают, брикетируют и переплавляют. [c.355]

    Извлечение экстракцией. Перспективный метод — экстракция германия из солянокислых растворов тетрахлоридом углерода, хлороформом, бензолом, трибутилфосфатом, керосином и т. п. Их различие в экстракционной способности невелико. По-видимому, во всех случаях экстрагируется Ge l4 [89]. Коэффициент распределения увеличивается с концентрацией кислоты и при экстракции тетрахлоридом углерода из 9 н. НС1 равен примерно 300 (для мышьяка в этих условиях не превышает 6) [90]. Соляная кислота при экстракции растворяется незначительно. Можно использовать смеси серной и соляной кислот или добавлять в кислые растворы хлорид натрия, калия, магния или кальция. Экстрагировать можно из растворов или из пульп непосредственно после кислотного разложения. Реэкстрагируют водой — выпадает осадок СеО. [90]. [c.184]

    Гетерополикислоты мышьяка Нз [Аз (МозОю) 4]. фосфора Нз[Р(МозОю)41, кремния Н4 [81 (МозОю) 4] наиболее часто применяют в анализе. Внутренняя сфера комплексов может содержать вместо групп М03О10 аналогичные группы У/зОю или и те, и другие вместе. Экстракцию применяют при определении примесей Аз, Р и 51 и некоторых других элементов, образующих гетерополикислоты, в разнообразных материалах— в сталях, чугунах и т. д. Известен экстракционный метод разделения фосфора, мышьяка и кремния, основанный на различной растворимости гетерополикислот в органических разбавителях и их смесях. Смесь бутанола и хлороформа извлекает из водного раствора только фосфорномолибденовую кислоту Нз[Р(МозОю)4]- Далее экстрагируют из водного раствора смесью бутанола и этилацетата Нз[А5(МозОю)4] и Н4 [51 (МозОю)41. Затем прибавляют к экстракту хлороформ при этом кремнемолиб-деновая кислота переходит в водный раствор, а мышьяковомолибденовая остается в экстракте. [c.573]

    Вмссто термической фосфорной кислоты целессобразно применять. упарсн1)ую экстракционную фосфорную кислоту, полученную разложением фосфатов контактной ссрной кислотой. В такой кислоте содержание мышьяка н свинца не превыгиает [c.265]

    Установлено, что, используя 30 %-ный раствор ТБФ в бензоле, толуоле и четыреххлористом углероде или Д2ЭГФК, можно извлечь трехвалентный мышьяк из сточных вод. При этом извлекается более 90 % мышьяка. Отмечается, что экстракционная очистка сточньк вод эффективна только для малых объемов стоков с большим содержанием мышьяка. [c.174]

    Для обнаружения мышьяка в присутствии сурьмы предложен метод экстракционной хроматографии, заключающийся в хроматографировании их в виде пирролидиндитиокарбаминатов, которые предварительно экстрагируют из исследуемого раствора хлороформом. Метод позволяет обнаруживать до 0,1 мкг Аз [1054]. [c.32]

    В сторону образования более окрашенной 3-формы, но и вследствие экстракционного концентрирования. Однако, несмотря на это, фотометрическое определение мышьяка в виде молибдомышьяковой гетерополикислоты довольно сильно ограничивается малой чувствительностью метода. [c.54]

    Применяют еще один вариант экстракционно-фотометрического определения мышьяка в виде мышьяковомолибденовой сини, в котором экстрагируют желтую мынгьяковомолибденовую кислоту кислородсодержащими органическими растворителями н в полученном экстракте восстанавливают ее до мышьяковомолибденовой сини [158, 302, 459, 599, 972, 980, ИЗО]. [c.60]


    Метод с применением пирролидиндитиокарбамината натрия. Этот реагент предложен в качестве универсального реагента для экстракционно-фотометрического определения элементов сероводородной группы [835]. В работе [836] описано определение мышьяка в чугуне и нелегированной стали. Максимум светопоглощения хлороформного экстракта т/ мс-пирролидиндитиокарбамината [c.72]

    Метод с применением дитизоната серебра [1051]. Этот метод основан на взаимодействии т/)ис-(диэтилдитиокарбамината) мышь-яка(П1) (получаемого при экстракционном отделении мышьяка от других элементов) с однозамещенным дитизонатом серебра с образованием смешанного комплекса мышьяка(П1) с диэтилдитиокарбаминатом и дитизоном и одновременным образованием диэтилдитиокарбамината серебра с освобождением эквивалентного количества дитизона. Концентрация выделившегося свободного дитизона пропорциональна содержанию мышьяка. [c.73]

    Экстракционно-фотометрические методы определения мышьяка с применением основных красителей характеризуются очень высокой чувствительностью. Так, например, молярный коэффициент погашения ионного ассоциата, образуемого молибдоарсенатом [c.75]

    Несмотря на высокую чувствительность экстракционно-фотометрических методов определения мышьяка, основанных на экстракции нонных ассоциатов молибдоарсената с основными красителями, эти методы не находят практического применения вследствие большей продолжительности и сложности самого определения. Они также значительно уступают методам молибденомышьяковой сини и Вашака и Шедивеца в точности. [c.76]

    В работе [25] указывается на возможность экстракционно-люминесцентного определения мышьяка, основанного на экстракции ионного ассоциата, образуемого молибдоарсенатом с бутилродамином, и возбуждении люминесценции ультрафиолетовым светом. [c.77]

    Определение микроколичеств мышьяка в сталях методом квадратно-волновой полярографии описано в ряде работ [704, 805, 1069, 1105]. В работе [805] предложено определять мышьяк в сталях одновременно с медью, сурьмой и свинцом на фоне фосфорной кислоты. Шушич и Пьещич [1110] описали экстракционно-полярографический метод определения мышьяка в сталях. Косвенное экстракционно-полярографическое определение мышьяка в сталях, основанное на экстракции 12-молибдомышьяковой гетерополикислоты и полярографировании молибдена, описано в работе [504]. [c.86]

    Более высокая чувствительность атомно-абсорбционного определения молибдена по сравнению с мышьяком (в 2—3 раза), связывание 12 атомов молибдена одним атомом мышьяка при образовании 12-молибдомышьяковой кислоты в сочетании с экстракционным концентрированием позволяют значительно повысить чувствительность атомно-абсорбционного определения мышьяка в различных материалах. [c.103]

    По данным Суворовской и ]Иинасяна [403], трихлорид мышьяка наиболее избирательно экстрагируют бензол и толуол. Экстракционное равновесие устанавливается быстро. Вместе с мышьяком полностью экстрагируется только германий в виде тетрахлорида [550]. При концентрации НС1 в растворе 10 М и выше мышьяк извлекается бензолом практически количественно. Другие элементы, в том числе Sb(III), Bi(III), Se(IV), Te(IV), Fe(III), Au(III), образующие хлоридные комплексы, не экстрагируются в этих условиях [521]. Это происходит потому, что при такой высокой концентрации НС1 они образуют хлоридные ме-таллокислоты, не экстрагирующиеся неполярными органическими растворителями. Из растворов с меньшей концентрацией НС1 заметно экстрагируются сурьма(П1) и некоторые другие элементы. [c.123]

    Кислородсодержащие органические растворители хорошо экстрагируют мышьяк(1П) из солянокислых растворов [66, но при этом избирательность экстракционного отделения мышьяка(111) значительно снижается. Так, например, при экстракции из 10 М растворов НС1 трибутилфосфат хорошо экстрагирует As(III), но при этом почти полностью экстрагируются Fe(III), Sb(III) Te(IV) и частично Se(IV) [403], образующие комплексные хлоридные металлокислоты, экстрагирующиеся органическими кислородсодержащими растворителями. [c.123]

    У1ышьяк(У) экстрагируется из солянокислых растворов органическими кислородсодержащими растворителями, но значительно хуже [66, 335, 936, 1090], и экстракционное равновесие устанавливается медленно. Предполагается, что мышьяк(У) экстрагируется при этом в виде мышьяковой кислоты [66]. [c.123]

    Накагава [938] исследовал экстракцию мышьяка(1П) из солянокислых сред растворами высокомолекулярных аминов. Им установлено, что раствор хлорида N-д одецилтриалкил-метиламмония в ксилоле из ИЛ/ H l экстрагирует мышьяк(П1) на 92%, в то время как мышьяк(У) при этом не экстрагируется. Сурьма(1П) извлекается из 1 — 4 М растворов НС1 примерно на 99%, однако с дальнейшим повышением концентрации H I степень извлечения сурьмы(1П) уменьшается. Сурьма(У) количественно экстрагируется при концентрации НС1 в водном растворе выше 6 М. Из этих данных следует, что использование высокомолекулярных аминов для экстракции мышьяка(1И) из солянокислых растворов существенью не повышает извлечение мышьяка, но значительно ухудшает избирательность его экстракционного отделения. [c.124]

    Для экстракционного отделения мышьяка используют хлороформные растворы N,N-д иэтилдитиокарбами-новой кислоты [283, 284, 288] и N.N-д иэтилдитио-карбаминат диэтиламмония [492, 637, 675, 699, 872, 982, 1097, 1098, 1201], который в отличие от диэтилдитиокарбамината натрия, растворим в хлороформе. [c.127]

    Тионалид (2-нафтиламид тиогликолевой кислоты) образует с мышьяком нерастворимое в воде соединение, экстрагирующееся органическими растворителями, что использовано для экстракционного отделения мышьяка [243]. [c.128]

    Пирролидиндитиокарбаминат натрия используется в качестве реагента для экстракционно-фотометрического определения мышьяка в чугуне и нелегированной стали [836]. Пирролидиндитиокарбаминат мышьяка(1И) экстрагируют хлороформом и измеряют оптическую плотность полученного экстракта. [c.128]

    Недавно [73] для экстракционно-фотометрического определения мышьяка в качестве реагента предложено использовать 1,8 дитионафтолат тетраметиламмония, образую-ш,ий с мы1пьяком(И1) экстрагирующийся хлороформом комплекс. Определение мышьяка заканчивают измерением оптической плотности экстракта. [c.129]

    Экстракция мышьяка(У) в впде желтой молибдомышьяковой кислоты. Мышьяк (V) с молибденом образует желтую молибдомышьяковую кислоту, используемую для фотометрического определения мышьяка (см. гл. IV раздел Фотометрические методы ). Молибдомышьяковая кислота экстрагируется кислородсодержа-ш,ими органическими растворителями, их смесями или смесями кислородсодержаш,их растворителей с углеводородами и галоге-ноуглеводородами [1.58, 302, 599, 740, 972, 979, 1200,12101. Способность молибдомышьяковой кислоты экстрагироваться кислород-содержаш,ими растворителями используется в ряде экстракционно-фотометрических методов определения мышьяка [571, 1182]. [c.130]

    Пробу (0,25 г) растворяют в 25 мл смеси (2 1) конц. HNO3 и НС1 при нагревании на песчаной бане, раствор разбавляют равным объемом воды, фильтруют, фильтрат разбавляют водой до 250 мл. К аликвотной части полученного раствора, содержащего не более 15 мкг As, прибавляют раствор аммиака до начала выпадения осадка гидроокиси железа, затем вводят конц. НС1 до ее концентрации в растворе, равной 0,5 Л/, добавляют 0,1 мл 0,5%-ного раствора молибдата аммония в 6 М HjSOi, через 15 мин. экстрагируют смесью (2 1) м-бутанола с диэтиловым эфиром (первый раз 15 мл и второй раз 5 мл смеси). Экстракты объединяют, промывают 2—3 раза 1 М раствором НС1, прибавляют 0,1 мл 0,1%-ного свежеприготовленного раствора хлорида олова(П) в 2 М НС1, немного безводного сульфата натрия, разбавляют экстракционной смесью до объема 25 мл, через 15 мин. измеряют оптическую плотность на фотоэлектроколориметре с красным светофильтром в кювете с толщиной слоя 1, 2 или 5 см (в зависимости от содержания мышьяка) пли на спектрофотометре при 800 нм в кювете с толщиной слоя 1 см. В качестве раствора сравнения используют раствор холостого опыта. [c.152]


Смотреть страницы где упоминается термин Мышьяка экстракционной: [c.194]    [c.572]    [c.313]    [c.141]    [c.243]    [c.296]    [c.196]    [c.6]    [c.66]    [c.67]    [c.103]    [c.123]    [c.124]    [c.125]    [c.131]   
Аналитическая химия мышьяка (1976) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте