Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк гетерополикислоты

    Фотометрический метод анализа. Измеряют оптическую плотность растворов комплексных соединений, образующихся при взаимодействии определяемых ионов с неорганическими или органическими реагентами. Так, для определения ионов железа к раствору прибавляют роданид калия или аммония оптическая плотность раствора образовавшегося роданида железа пропорциональна количеству железа в растворе. Кремний, фосфор или мышьяк можно определить в виде гетерополикислот Н4[51(МозОю)4], Нз[Р(МозОю)4] или Нз[АзХ X (МозОю)4 , окрашенных в желтый цвет. [c.24]


    Гетерополикислоты — соединения, состоящие из малого центрального атома, чаще всего фосфора, кремния, мышьяка и др., и координированных ионов, способных к полимеризации. Для фотометрического анализа наиболее часто применяются гетерополикислоты, содержащие в качестве координированных групп поли-ионы молибдена. [c.148]

    Гетерополикислоты (ГПК) кремния, фосфора, мышьяка (так называемые желтые формы) образуются в кислой среде при избытке молибдена (VI) в растворе. [c.138]

    Из комплексов с неорганическими лигандами большое значение имеют гетерополикислоты, которые широко применяют для определения фосфора, кремния, мышьяка, ниобия и других ионов. Глубокие исследования этих комплексов проведены академиками [c.237]

    Метод основан на способности фосфора образовывать фосфорно-молибденовую гетерополикислоту, которая при действии восстановителя переходит в интенсивно окрашенное соединение фосфорно-молибденовую синь. Мышьяк, мешающий определению фосфора, удаляют дистилляцией в виде летучих галогенидов. [c.219]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Кроме арсената, в осадительном титровании используются также и другие соединения мышьяка, в том числе и его гетерополикислоты, образуюш ие нерастворимые соединения с высокомолекулярными органическими основаниями. [c.49]

    Другие простые и смешанные гетерополикислоты мышьяка мало изучены и аналитического значения не имеют. [c.56]


    Опубликованы данные о влиянии различных факторов на экстракцию гетерополикислот, а также варианты методик для экстракционного разделения и фотометрического определения фосфора, мышьяка, кремния, германия и ванадия в форме соответству-юш,их гетерополикислот в различных материалах. [c.239]

    Микрограммовые количества фосфора определяют фотометрически в виде фосфорномолибденовой гетерополикислоты [355]. Чувствительность метода равна 0,002%. Кремний и мышьяк должны отсутствовать.  [c.201]

    Гетерополикислоты. Хорошо известно образование фосфорномолибденовой кислоты Hз[P(MOзOl )J на образовании этого окрашенного в желтый цвет соединения основаны различные методы определения малых количеств фосфора в металлах, горных породах и т. д. Подобные же соединения образуют кремний и мышьяк. При обработке гетерополикислот названных элементов подходящими восстановителями образуются продукты восстановления (церулеокислоты), окрашенные в интенсивно синий цвет. Это позволяет еще больше повысить чувствительность методов определения. [c.213]

    Соли гетерополикислот как ионообменные сорбенты известны давно, однако применять их начали совсем недавно. В качестве синтетических минеральных ионообменников пользуются труднорастворимыми солями гетерополикислот общей формулы МзХУ12О40- Н2О, где X — фосфор или мышьяк, сурьма, кремний V — молибден или вольфрам. Простейшим представителем труднорастворимых солей гетерополикислот является фосфоромолибдат аммония (МН4)зРМо1204о. Замещение иона аммония возможно вследствие структурных особенностей соли, содержащей центральную октаэдрическую группу РОе и 12 октаэдров МоОб, в целом составляющих рыхлую решетку, в которой могут поместиться ионы даже с большим, чем у аммония, ионным радиусом. [c.45]

    В основе фотометрических методов определения кремния, фосфора и мышьяка лежит реакция образования молибденовых гетерополикислот состава H4lSiM0i204(,] /гН О Нз [PMoi204(,]-rtH20  [c.138]

    Восстановленные и невосстановленные формы гетерополикислот экстрагируются органическими растворителями, обладающими элект-ронно-донорными атомами кислорода или азота (спиртами, кетонами, эфирами, высокомолекулярными аминами), что позволяет определять микрограммовые количества фосфора, кремния и мышьяка. [c.139]

    Примечание. Этот метод приготовления эталонных растворов используют при анализе всех объектов (мышьяка и его соединений, сурьмы, галлия и его соединений), в которых для получения синей формы фосфорномолибдеповой гетерополикислоты применяют аскорбиновую кислоту с тартратом калием антимопилом. [c.142]

    Открытие мышьяка. Мышьяк(У) можно предварительно открыть реакцией с молибдатом аммония в присутствии азотной кислоты. Прп наличии арсенат-ионов AsO образуется желтый кристаллический осадок аммонийной соли мышьяковомолибденовой гетерополикислоты (ЫН4)з[А8О4(М0Оз),2]. [c.339]

    Гетерополикислоты мышьяка Нз [Аз (МозОю) 4]. фосфора Нз[Р(МозОю)41, кремния Н4 [81 (МозОю) 4] наиболее часто применяют в анализе. Внутренняя сфера комплексов может содержать вместо групп М03О10 аналогичные группы У/зОю или и те, и другие вместе. Экстракцию применяют при определении примесей Аз, Р и 51 и некоторых других элементов, образующих гетерополикислоты, в разнообразных материалах— в сталях, чугунах и т. д. Известен экстракционный метод разделения фосфора, мышьяка и кремния, основанный на различной растворимости гетерополикислот в органических разбавителях и их смесях. Смесь бутанола и хлороформа извлекает из водного раствора только фосфорномолибденовую кислоту Нз[Р(МозОю)4]- Далее экстрагируют из водного раствора смесью бутанола и этилацетата Нз[А5(МозОю)4] и Н4 [51 (МозОю)41. Затем прибавляют к экстракту хлороформ при этом кремнемолиб-деновая кислота переходит в водный раствор, а мышьяковомолибденовая остается в экстракте. [c.573]

    Молибден и вольфрам образуют комплексные гетерополикислоты с фосфором, мышьяком, кремнием и другими элементами. Например, состав фосфорновольфрамовой гетерополикислоты Н [Р( Л 207)б]-л НгО, фосфорномолибденовой гетерополикислоты Н7[Р(Мо207)б]-НаО. Реакции образования гетерополикислот с фосфорной, мышьяковой и кремниевой кислотами являются основой фотометрических методов определения фосфора, мышьяка и кремния. Вольфрам образует комплексные анионы состава [W( 2H204)лl -, [W( 4H406)412- [c.168]

    Метод желтой молибдомышьяковой гетерополикислоты. Метод является одним из первых фотометрических методов определения мышьяка [576, 775, 776, 1112]. Он основан на образовании арсе-натом в кислых растворах желтой молибдомышьяковой гетерополикислоты. Механизм этой цветной реакции, строение и свойства образующегося окрашенного продукта изучались многими исследователями [176, 301, 321, 322, 571, 724, 1044, 1085, 1100]. [c.53]

    Арсенат-ион реагирует с молибдатом с образованием двух гетерополикислот — бесцветной а-формы и желтой р-формы. Спектры светопоглощения обеих форм представлены на рис. 2. В водных растворах всегда сначала образуется а-форма молибдомышьяковой гетерополикислоты. При концентрации молибдата 0,1 М и концентрации минеральной кислоты более 0,5 N в присутствии арсената через 30 мин. появляется желтая окраска, достигающая максимума в течение нескольких дней. Процесс перехода бесцветной а-формы в окрашенную р-форму может быть ускорен нагреванием, при этом возможно выделение осадка, вследствие чего такая модификация метода не находит аналитического применения. В связи с этим для использования реакции образования желтой молибдомышьяковой кислоты для определения мышьяка исследовались различные факторы, ускоряющие переход бесцветной а-формы молибдомышьяковой гетерополикислоты в окрашенную р-форму. [c.53]


    Другой путь повышения чувствительности метода является экстракция молибдомышьяковой гетерополикислоты органическими кислородсодержаш,ими растворителями. Следует отметить, что водно-ацетоновые растворы молибдомышьяковой гетерополикислоты имеют несколько меньшую интенсивность окраски, чем органические экстракты [571]. Молярный коэффициент погашения экстракта молибдомышьяковой гетерополикнслоты в к-бутаполе при длине волны 370 нм составляет 5,1-10 [1182]. В этом случае повышение чувствительности фотометрического определения мышьяка достигается не только за счет полного смещения расновесня [c.54]

    В сторону образования более окрашенной 3-формы, но и вследствие экстракционного концентрирования. Однако, несмотря на это, фотометрическое определение мышьяка в виде молибдомышьяковой гетерополикислоты довольно сильно ограничивается малой чувствительностью метода. [c.54]

    Мешающее влияние многих элементов, поглощающих в области поглощения молибдомышьяковой гетероноликислоты, монлно устранить путем экстракции ее органическими кислородсодержащими растворителями, их смесями или смесями этих растворителей с некоторыми углеводородами или их галогенозамещенными. Для устранения мешающего влияния элементов, которые сами образуют с молибдатом собственные гетероноликислоты, нредло-н ен ряд методик, в которых мышьяк определяют непосредственно без отделения от указанных элементов, используя условия, в которых эти элементы не образуют собственных гетерополикислот. [c.54]

    Мышьяковая кислота с молибдатом в присутствии ванадата образует молибдованадиевоыьппьяковую гетерополикислоту [717], характеризующуюся несколько большей интенсивностью желтой окраски. Метод удобен для определения мышьяка в материалах, содержащих ванадий. Оптимальной для образования молибдованадиевомышьяковой гетероноликислоты является среда с кислотностью от pH 2 до 0,2 N HNOg. Мышьяк этим методом рекомендовано определять в медных сплавах [513, 514]. [c.56]

    Определение микроколичеств мышьяка в сталях методом квадратно-волновой полярографии описано в ряде работ [704, 805, 1069, 1105]. В работе [805] предложено определять мышьяк в сталях одновременно с медью, сурьмой и свинцом на фоне фосфорной кислоты. Шушич и Пьещич [1110] описали экстракционно-полярографический метод определения мышьяка в сталях. Косвенное экстракционно-полярографическое определение мышьяка в сталях, основанное на экстракции 12-молибдомышьяковой гетерополикислоты и полярографировании молибдена, описано в работе [504]. [c.86]

    Мышьяк(У) оказывает замедляющее действие на осаждение фосфора и соосаждается вместе с ним вследствие образования мышьяковомолибденовой гетерополикислоты. Относительно большие количества мышьяка отделяют осаждением в виде сульфида или восстановлением до трехвалентного мышьяка KBг(NH4Bг) в солянокислой среде и выпариванием раствора почти досуха мышьяк улетучивается в виде АзС1з. Присутствием количеств мышьяка менее 0,005% можно пренебречь, если осаждение фосфоромолибдата проводить при комнатной температуре. [c.28]

    Описан ряд методов разделения и определения РО , SiOg и AsOf, основанных на селективном экстрагировании их в виде гетерополикислот различными органическими растворителями с последующим фотометрическим окончанием анализа [1, 401, 598, 920, 1001]. Филиппова и Кузнецова [401] описали метод раздельного фотометрического определения фосфора, мышьяка и кремния при их совместном присутствии. Для отделения фосфора (в виде фосфоромолибдата) применяют смесь H I3 — бутанол (3 1). Затем отделяют As смесью бутанол — этилацетат (1 1). Из полу- [c.90]

    Предложен метод определения германия, фосфора и мышьяка [625], основанный на спектрофотометрировании желтых" пятен гетерополикислот определяемых элементов после их разделения хроматографированием на бумаге и проявлении азотнокислым раствором парамолибдата аммония. В качестве подвижного растворителя применяют бутанол, насьпценный 10%-ной HNOg. Разделение проводят методом нисходяш ей хроматографии. Метод применим для определения 2 мкг фосфора в присутствии 20-кратного количества Si, As, V и 5-кратного количества Ge. Если количества Fe, Мо и W соответственно составляют менее чем 0,15, 1,25 и 2,5 ч. от присутствующего количества фосфора, то эти элементы не мешают анализу. Хром мешает определению, если содержание его составляет более чем 0,15 ч.от присутствзтощего содержания фосфора. Мешающее влияние Fe и Сг, по мнению авторов, обусловлено образованием фосфатных комплексов этих элементов. [c.102]

    Как известно, германий образует, подобно кремнию, фвсфору (V) и мышьяку (V), гетерополикислоты германомолибденовая гетерополикислота восстанавливается на ртутном капельном электроде и может быть осаждена нитроном в гликолевом буферном растворе с pH 2—2,5. [c.198]

    Поскольку фосфор образует комплексные гетерополикислоты, то он может быть определен, подобно германию (см. Германий ), прп помощи нитрона в гликолевом буферном растворе Образованием фосфорномолибденовой гетерополикислоты пользуется Хлебовский предложивший чрезвычайно сложный метод косвенного определения фосфора в минералах и сплавах. После разложения пробы получают осадок гетерополикислоты, экстрагируют его изобутиловым спиртом водную фазу, содержащую избыток молибдата, примененного для осаждения фосфора, обрабатывают амальгамой цинка для восстановления молибдена (VI) до молибдена (III) и титруют последний раствором железа (III). Описанные операции сопровождаются, конечно, многократными промываниями и фильтрованиями, причем мышьяк надо удалять возгонкой, а ванадий восстанавливают до низшей валентности, чтобы он не участвовал в образовании гетерополикислоты. По нашему мнению, такой способ вряд ли может получить практическое применение не только вследствие исключительной громоздкости, но и потому, что точность его весьма сомнительна. [c.329]

    Окислы (сурьмы, свинца, висмута, ванадия, вольфрама, хрома, никеля, олова, мышьяка, молибдена на силикагеле) Летучие галоидные соединения (хлористый водород, иодистый водород, бромистый водород, хлористый метил, четыреххлористый углерод, хлористый аммоний) на носителях (пемзе, силикагеле, коксе) Щелочи, марганцовокислый калий, хлорнокислый калий на пемзе Кислоты (борная, фосфорная, надванадие-вая, гетерополикислоты, мышьяково- вольфрамовая кислота на глиноземе) [c.19]

    Фотометрический метод определения фосфора в стали основан на восстановлении фосформолибденовой кислоты Ре(П) и МагЗОз до так называемого молибденового синего — ярко окрашенного синего комплекса, в котором молибден находится в более низкой степени окисления, чем в молибдате. Для этого после окисления до фосфата при помощи КМПО4 и восстановления полученного МпОа азотнокислый раствор нейтрализуют аммиаком, раствор слабо подкисляют НС1 и Ре(П1) восстанавливают НагЗОз при нагревании. Раствор дополнительно подкисляют НС1, охлаждают, чтобы предотвратить образование гетерополикислот, как в случае кремния и мышьяка, и к нему медленно по каплям прибавляют определенный объем раствора молибдата аммония. Полученный синий раствор переливают в мерную колбу, доливают до отметки и фотометрируют. Концентрацию фосфора находят по предварительно построенной калибровочной кривой. [c.477]

    Это, несомненно, связано с тем, что лиганды даже в отсутствие фосфора (кремния, мышьяка и др.) способны к образованию различных полимерных групп. В связи с этим строение гетерополикомплексов может быть представлено формулами Н7[Р(Мо207)е] или Нз[Р(МозОю)4]. Это несколько уменьшает трудности теоретического рассмотрения вопроса, однако не снимает этих трудностей. В рассматриваемом здесь разрезе вопроса очевидным является несомненный факт крайней перегруженности координационной сферы. Поэтому можно было предполагать, что при действии третьего компонента, способного реагировать с одним из компонентов гетерополикислоты, последняя будет разрушаться. Например, можно было полагать, что при действии титана на фосфорно- [c.358]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Важное аналитическое значение имеют также гетерополикислоты мышьяка (V), а именно (Молибдено- я ванадиевамышьяко-вая кислота, которые напоминают соотв1етствующие кислоты фосфора (V). [c.496]

    Показано, что ионы Азз5б и Аз2554- являются полимерами с невысокими коэффициентами полимеризации изв. Циклические структуры найдены также в продуктах реакции АзРз и 50з Сообщается о гетерополикислотах мышьяка, содержащих фосфор 992. 1004 молибден 1205 и вольфрам 1258. [c.612]


Смотреть страницы где упоминается термин Мышьяк гетерополикислоты: [c.153]    [c.205]    [c.454]    [c.136]    [c.40]    [c.98]    [c.149]    [c.395]    [c.58]    [c.461]    [c.669]    [c.91]    [c.66]    [c.493]   
Справочник по экстракции (1972) -- [ c.296 ]

Основы общей химии Т 1 (1965) -- [ c.461 ]

Основы общей химии том №1 (1965) -- [ c.461 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерополикислоты



© 2024 chem21.info Реклама на сайте