Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винная сть солей

    Цель настоящей работы - экспериментальное изучение факторов, определяющих процесс электрохимического выделения примесей на угольных электродах, и разработка на зтой основе химико-спектральных методов анализа некоторых особо чистых веществ органических кислот (лимонная, щавелевая и винная), солей алюминия (азотнокислый и метя фосфат) и воды. [c.156]


    В качестве стабилизаторов рекомендованы также щавелевая, лимонная и винная кислоты и соли этих кислот (аммониевые или щелочных металлов) в количестве 0,0001—0,005 вес. %. Считают что наиболее целесообразно вводить эти соединения на стадии разделения продуктов реакции, тогда в готовом продукте остаются очень незначительные количества добавок (не более 0,005 вес. %) но достаточные для стабилизации дифенилолпропана. [c.130]

    Вспомогательные вещества применяются также при получении сахара, пива, вина, желатина, антибиотиков, глицерина, растворителей, синтетических смол, едкого натра, серы, солей урана, для очистки воды, гальванических растворов и в ряде других случаев. При этом используют фильтрпрессы, фильтры с горизонтальными камерами, листовые и патронные фильтры, вращающиеся барабанные фильтры. [c.339]

    Способность ионитов вступать в ионный обмен с находящимися в растворе электролитами широко используется в технике. Иониты применяются для обессоливания воды, удаления солей из сахарных сиропов, молока, вин, растворов лекарственных препаратов, для извлечения ионов при очистке сточных вод. Иониты применяются также в ионообменной хроматографии, в качестве высокоэффективных катализаторов многих химических процессов и др. [c.96]

    Процесс Стретфорд [28, 600, 601] нашел широкое применение со времени успешных экспериментов на пилотной установке в 1959 г. Достоинством процесса является возможность исключить-очень токсичные арсениты и уменьшить содержание сероводорода в широком диапазоне первоначальных концентраций (от 100 до 10 000 млн ) до конечной концентрации 1 млн в отходящих газах. Построенные установки имели мощность 60 000 м /ч. В процессе Стретфорд сероводород абсорбируется щелочным раствором (pH = 8,5—9,5), содержащим кроме карбоната натрия эквимолекулярные количества ванадата натрий-аммоний и антрахинон-2,6 к 2,7-дисульфоната (ADA) [на первых установках применяли метава-надат вместо ванадата аммония]. Кроме того, к раствору добавляется соль Рошеля (натрий-калиевая соль винной кислоты), чтобы ванадат не выпадал в осадок. [c.149]

    Для того чтобы брожение раствора сахара протекало в желаемом направлении, необходимо выбрать условия, наиболее благоприятствующие росту дрожжевых грибков (сахаромицетов). Оптимальной является температура 30—37° при температурах ниже 5 и выше 50° дрожжевые грибки утрачивают свою сбраживающую способность. Слишком высокая концентрация сахара в растворе вредно влияет на сахаромицеты уже при 12—15% сахара они выживают лишь в редких случаях. Получающийся при брожении спирт тоже замедляет рост грибков, а при достаточно высоких. концентрациях даже совершенно прекращает его. Различные культуры дрожжей обладают в этом отношении неодинаковой чувствительностью так, существуют винные дрожжи, которые способны вырабатывать спирт крепостью до 20%, но в большинстве случаев брожение прекращается уже при более низких концентрациях спирта. Наконец, для нормального развития дрожжей необходимо, чтобы они были обеспечены питательными солями, а именно соединениями калия, магния, производными фосфорной кислоты и, в первую очередь, азотистыми соединениями, которые нужны для образования белкового вещества самих грибков. Наиболее подходящими для этого источниками азота являются амиды и аминокислоты, ио можно пользоваться также и неорганическими аммониевыми солями. [c.124]


    Винил-4 -оксиазобензол — кристаллы с т. пл. 137 легко растворим в обычных растворителях и плохо — в циклогексане [166] получен сочетанием соли диазония, полученной из 4-аминостирола, с фенолом [166]. [c.121]

    Винил-3 -метил-4 -оксиазобензол получен сочетанием соли диазония, полученной из 4-аминостирола, с о-крезолом [166]. [c.122]

    Тогда как систематический анализ для катионов является общепринятым и установившимся, для систематического хода качественного анализа анионов предложены многочисленные и отличающиеся одна от другой схемы. Все они основываются на осаждении анионов различными катионами (наиболее часто Ва2+ и Ag+), а в некоторых случаях используются окислительно-восстановительные свойства, летучесть кислот, их ангидридов или продуктов их разложения. Число обычных для аналитической практики анионов довольно многочисленно, особенно если учесть и анионы ряда органических кислот (уксусной, лимонной, винной), соли которых нередко встречаются при анализе неорганических образцов. Поэтому систематический анализ анионов связан с большим числом операций выделения, сопровождающихся вводом в систему множества реактивов. Их введение затрудняет последующие этапы систематического анализа и одновременно может стать причиной X внесения некоторых распространенных ионов ( 1ЧS04 СОз , КОз), часто присутствующих в реактивах. Поэтому систематический анализ анионов обычно используют в случае не очень сложных систем, для которых уже имеются ориентировочные данные предварительного анализа. В табл. VIII. 2 представлена одна из схем систематического анализа анионов, включающая наиболее часто встречающиеся анионы. [c.187]

    В более чистом виде поташ приготовляли обжигом винного камня и этот продукт считали веществом, отличным от поташа, получаемого из золы (по терминологии алхимиков sal tartari — винная соль и sal vegetabile — растительная соль). [c.12]

    Винные соли, винный ангидрид. — Пировипные кислоты. — Хинная кислота, гидрохинон, хинон, хлорапил. — Лимонная кислота и ее производные. — Меконовая кислота. — Законы основности.— [c.31]

    Подтверждением последней перегруппировки, согласно наблюдениям, служит то, что оксалат натрия является одним из первичных продуктов, получающихся при сплавлении винной соли с едким натром. Однако, при плавлении со щелочью идет определенный окислительный процгссП сопровождающийся выделением водорода. Гораздо логичнее считать, что щелочь декэрб-оксилирует тартрат с образованием этиленгликоля, который затем немедленно окисляется в оксалат. Это, однако, совсем не похоже на предполагаемый механизм пиролиза. Кроме того, щавелевая кислота никогда не была получена при нагревании винной кислоты. Так как винная кислота является а- и р-оксикислотой, можно было бы думать, что она подвергается пиролизу по схеме, общей для обоих типов, именно, дегидратации в ненасыщенную кислоту. В таком случае должна протекать следующая реакция  [c.428]

    Поскольку в растворе присутствуют также С1"-ионы, произведение растворимости А С1 окажется превышенным, и соль выпадет в осадок. Как известно, это явление используется при открытии Ай +- и С1--И0Н0В. Точно так же, если растворы комплексных солей меди с аммиаком, винной кислотой, или глицерином, имеющие темно-синюю окраску, подкислить, то окраска изменится на бледно-голубую окраску Си2+-катионов. Это свидетельствует о разрушении комплексных ионов под влиянием Н+-ионов. Следовательно, для осуществления маскировки нужно создавать достаточно высокое значение pH. [c.97]

    Общеупотребительные реактивы имеются в любой лаборатории, к ним относится сравнительно небольшая группа химических веществ кислоты (соляная, азотная и серная), щелочи (раствор аммиака, едкие натр и кали), окиси кальция и бария, ряд солей . преимущественно неорганических, индикаторы (фенолфталеин, метиловый оранжевый и др.), а также некоторые органические рас-- творигели (этиловый, или винный, спирт, диэтиловый, или серный,, эфир, и т. п.). [c.23]

    Применение полиэтилена определяется комплексом его физико-механически5(, химических и диэлектрических свойств. Из него изготовляют трубы, которые имеют высокую коррозионную стойкость, сохраняют прочность при низких температурах, физиологически безвредны, благодаря чему их используют для транспортирорки воды, растворов солей, соков, вина, пива и т. д. Пленки из полиэтилена применяют в сельском хозяйстве — для остекления парников, теплиц и хранения овощей, в быту, как конструкционный и упаковочный материал. [c.11]

    Более 100 лет назад немецкие химики Цейзе, а затем Бирнбаум синтезировали и выделили твердые комплексные соединения олефиновых углеводородов Сз—Св с платиной (соли Цейзе). В последующий период многими исследователями было установлено, что способностью к образованию твердых и жидких комплексов с непредельными соединениями обладают также медь, серебро, железо н ряд других металлов переменной валентности. В основе комплексообразования лежит взаимодействие я-электронов двойных связей олефннового компонента (лиганда) с незаполненными орбиталями атома (иона) металла. Например, структура соединения (так называемого л-комплекса) ди- винила с хлористой платиной состава (Р1С12 )2-(С4Н )2 может быть представлена в виде  [c.302]


    Эта соль образуется также из бромистого винила и сернистокислого калия. Попытки получить из нее чистую кислоту пе дали вполне удовлетворительных результатов нри прибавлении уксуснокислого свинца галоид не переводится в осадок, а концентрированная серная кислота, отщепляя бром, присоединяется одновременно по двойной связи. Этиленсульфокислота может быть получена действием щелочи на натриевую соль 2-хлорэтансульфокислоты, и в этом случае двойная соль, повидимому, не мешает выделению продукта реакции [497]. [c.189]

    Другой, часто используемый вид обменных реакций приводит к образованию труднорастворимых солей кальция. К таким добавкам относятся кислоты борная, виннокаменная или винная, щаве-114 [c.114]

    Оптические изомеры (энантиомеры) обладают одинаковьпш физическими и спектральными характерргстиками (температуры кипашя и плавления, плотность, показатель преломления, все виды спектров), а различаются только направлением вращения плоскости поляризованного света и образуют кристаллы различной формы (зеркальные отображения). Например, Луи Пастер впервые разделил энантиомеры соли винной кислоты, пользуясь пинцетом и лупой (рис. 8.3). [c.192]

Рис. 8.3. Кристаллы зеркальных и.юмеров натриево-аммонийной соли винной кислоты. Для того, чтобы показать асилшетрию кристаллов, две грачи, обозначенные буквами а и б, заитршованы Рис. 8.3. Кристаллы зеркальных и.юмеров натриево-аммонийной <a href="/info/173397">соли винной кислоты</a>. Для того, чтобы показать асилшетрию кристаллов, две грачи, <a href="/info/1817732">обозначенные буквами</a> а и б, заитршованы
    В 1948 г. французский ученый Луи Пастер обратил внимание, что винная кислота, точнее - ее аммониевые соли, образует кристаллы двух типов, которые являются как бы зеркальными отображениями друг друга. Пастер с помощью лупы и пинцета разделил их, и оказалось, что раствор одних кристаллов вращает плоскость поляризованного света вправо (d-винная кислота), а других - влево (1-винная кислота). Сам Пастер связьшал различия в свойствах с различным строением кристал- [c.230]

    Хлористый винил СН2 = СНС1 (радикал СН2 = СН— носит название винил) представляет собой бесцветный газ, бромистый винил — жидкость с эфирным запахом оба полимеризуются на солнечном свету и в присутствии перекисей. Хлористый винил получают из ацетилена и соляной кислоты в присутствии солей ртути  [c.106]

    Рацемат представляет собой наиболее часто встречающуюся систему, состоящую из й- и /-форм. Это название было предложено Пастером, который впервые наблюдал такое явление на виноградной кислоте ( рацемической кислоте ), состоящей из лево- и правовращающей винных кислот. Рацемические молекулярные соединения, насколько известно в настоящее время, устойчивы только в твердом состоянии. В рас-1воре и в парах они распадаются на отдельные компоненты, как показывают их криоскопические свойства, электропроводность, удельный вес и химическая реакционная способность, всегда тождественные свойствам оптически активных веществ. Поэтому различия между рацематами и оптически активными формами ограничиваются, помимо действия на поляризованный свет и взаимодействия с другими несимметричными системами, теми свойствами, которые наблюдаются лишь у твердых фаз. Так, они могут различаться по температурам плавления, плотности, растворимости их кристаллическая форма также может быть различна, причем кристаллы рацематов, часто обладают голоэдрическим, а активные формы — гемиэдрическим строением. Отклонения наблюдаются также и в содержании кристаллизационной воды рацемическая винная кислота кристаллизуется с одной молекулой НгО, активная — без воды кальциевая соль неактивной маиноновой кислоты безводна, а соль активной формы содержит две молекулы Н2О и т. д. [c.134]

    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]

    Исключительная способность растворять жиры, масла и смолы обусловливает техническое применение сероуглерода в качестве растворителя. Кроме того, сероуглерод используется для получения четыреххлористого углерода (стр. 282), роданистых соединений и тиомоче-вины, для вулканизации каучука и в качестве яда для борьбы с вредителями растений. Однако наибольшее применение сероуглерод нашел в производстве искусственного шелка—вискозы. Получение вискозного шелка из целлюлозы основано на общей реакции взаимодействия сероуглерода со спиртами. Сероуглерод в ирнсутствгш щелочей соединяется со спиртами, причем образуются к с анто генат ы, соли эфиров д и т и о у г о л ь н о й кислоты, которые легко растворимы в воде  [c.285]

    Интересную перегруппировку претерпевает D-винная кислота прт кипячении со щелочами, водой или разбавленными кислотами прл этом образуется недеятельная, нерасщепляющаяся мезовииная кислота (антивинная кислота), которая плавится при 140". Отделить ее от оптически деятельных и рацемической вииных кислот можно в виде кислой калиевой соли, которая, в п]>отивоположность винному камню, легко растворима в холодной воде. [c.410]


Смотреть страницы где упоминается термин Винная сть солей: [c.184]    [c.88]    [c.53]    [c.121]    [c.126]    [c.285]    [c.326]    [c.324]    [c.62]    [c.157]    [c.487]    [c.20]    [c.834]    [c.353]    [c.311]    [c.135]    [c.135]    [c.136]    [c.410]    [c.411]    [c.411]    [c.122]    [c.122]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.496 , c.499 , c.500 , c.646 ]




ПОИСК







© 2025 chem21.info Реклама на сайте