Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты соли алифатические эфиры

    Алифатические амины обладают приблизительно такой же основностью, как и аммиак, а ароматические амины значительно менее основны. Амины гораздо менее основны, чем гидроксил- или этилат-ион, но они существенно более сильные основания, чем спирты, простые и сложные эфиры и т. д., а также вода. Под действием водных минеральных или карбоновых кислот амины легко превращаются в соли водный раствор, содержащий гидроксил-ион, легко переводит соли обратно в свободные амины. Как и в случае карбоновых кислот, почти ни одна реакция аминов не происходит без превращения в соли и в свободные основания, и поэтому целесообразно рассмотреть свойства этих солей [c.687]


    Эфиры органических кислот, ЫНз Амид, спирт Неорганическая соль цинка в присутствии алифатических карбоновых кислот С < 7 [627] [c.649]

    Алифатические карбоновые кислоты, их соли и эфиры находят широкое применение в фармацевтической, витаминной, косметической и автомобильной промышленности. Алифатические карбоновые кислоты могут быть получены окислением соответствующих спиртов или альдегидов. Известным химическим способам получения этих кислот присущ ряд недостатков, связанных с использованием дорогих и дефицитных окислителей, невысокой селективностью и малой эффективностью, большим количеством отходов, применением в качестве катализаторов токсичных соединений тяжелых металлов. [c.207]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]

    Полученные карбоновые кислоты разделялись на нафтеновые и алифатические по методике [7], основанной на различной растворимости в серном эфире свинцовых солей алифатических и нафтеновых кислот. [c.166]

    Прямого метода колориметрического определения карбоксильной группы по этой реакции не существует. Однако карбоновые кислоты можно определять, если перевести их в соответствующие эфиры, предпочтительно метиловые или хлорангидриды. Отмечено, что в присутствии каталитически действующей соли никеля и нагревании алифатические карбоновые кислоты можно непосредственно перевести в гидроксамовые кислоты.  [c.118]

    Аналогичная закономерность наблюдается и в случае некоторых солей карбоновых кислот. Известно, что соли висмута,марганца, свинца, меди и некоторых других тяжелых металлов многих высших алифатических и алициклических кислот растворимы в таких гидрофобных растворителях, как эфир, бензол, растительные масла, тогда как соответствующие соли низших алифатических кислот, приближающиеся по своим свойствам к неорганическим соединениям ионного характера, в таких растворителях нерастворимы. [c.45]


    Среди жирных кислот с прямой цепью уксусная является единственной из низших кислот, дающей высокий выход продуктов Кольбе (приблизительно 90%) [25]. Относительно хороший выход получается при электролизе кислот, содержащих шесть или более атомов углерода [26]. Промежуточные между ними алифатические кислоты дают большие количества сложных эфиров, олефиновых углеводородов и других побочных продуктов, образование которых может быть направлено в сторону получения продуктов Кольбе, если применить высокие концентрации щелочных солей карбоновой кислоты. К сожалению, вследствие побочных реакций и выделения кислорода выход по току иногда остается чрезвычайно низким [27]. [c.112]

    По типу альдольного присоединения с альдегидами могут реагировать также карбоновые кислоты и их производные. Синтезом Перкина называют конденсацию ароматического альдегида с ангидридом или сложным эфиром алифатической кислоты. В качестве основных конденсирующих средств применяются щелочные соли карбоновых кислот или пиридин. Так, при нагревании бензойного альдегида с уксусным ангидридом и уксуснокислым натрием образуется коричная кислота. Роль метиленовой компоненты в этой реакции выполняет уксусный ангидрид. Продукт альдольного типа неустойчив и не может быть выделен. Отщепление воды приводит к образованию смешанного ангидрида коричной и уксусной кислот, который быстро гидролизуется при обработке водой  [c.288]

    Подобно обычным карбоновым кислотам, L-аминокислоты вступают во многие реакции, свойственные соединениям, содержащим карбоксил. Они образуют соли, эфиры, амиды и галогенангидриды. При образовании эфиров, амидов и галогенангидридов кислот реагирует неионизованная карбоксильная группа, а потому с аминокислотами эти реакции идут труднее, чем с алифатическими кислотами. Наряду с этими реакциями для аминокислот характерны и реакции, свойственные аминам. [c.347]

    Бензойная кислота — это белое кристаллическое вещество, малорастворимое в воде. В воде она, как всякая кислота, диссоциирует на ионы водорода и кислотный остаток. Бензойной кислоте свойственны реакции, характерные для любой карбоновой кислоты. Карбоксильная группа — СООН — вот что определяет ее основные свойства и реакции. Нам они известны по алифатическим карбоновым кислотам. Так, бензойная кислота образует соли — бензоаты и сложные эфиры. [c.114]

    Штейн " с помощью хлористых солей металлов, например хлорного железа или хлористого алюминия, получил сложные эфиры хлоргидрина с алифатическими карбоновыми кислотами, содержащими не менее 4 атомов углерода в цепи. Взаимодействие осуществляется, например, следующим образом 460 г эпихлоргидрина при 50—65" приливают по каплям к охлажденной смесп 500 г масляной кислоты с 25 г безводного хлорного железа. После добавления 30 г ацетата натрия и перегонки получают 1-хлор-2-окси-З-пропилбутират с т. кип. 120—130"/10 мм. [c.227]

    К такому же виду полиглицидных эфиров поликарбоновых кислот простым способом пришли Келер и Пич , пров дя реакцию между щелочными солями многоосновных алифатических или ароматических карбоновых кислот с эпихлоргидрином в присутствии четвертичной соли аммония в качестве катализатора. Реакцию проводят в аппарате с мешалкой и обратным холодильником при 110—160° с избытком эпихлоргидрина, который служит также разбавителем твердой массы. Такие полиглицидные эфиры карбоновых кислот могут применяться в качестве пластификаторов, стабилизаторов для поливинилхлорида, в качестве клеев и вспомогательных веществ в текстильной промышленности. Синтез ведут следующим образом  [c.547]

    Пестицидная активность эфиров карбоновых кислот, как правило, выше, чем активность свободных кислот и их солей. Наиболее активны амиды различных алифатических кислот и их галогенпроизводных. Амиды обладают умеренной инсектицидной и акарицидной активностью, но являются довольно сильными фунгицидами и гербицидами. В настоящее время для борьбы с сорными растениями и для других целей получили практическое применение более 20 амидов алифатических кислот. Пестицидными свойствами обладает и ряд нитрилов и тиопроизводных кислот, а также производные двухосновных алифатических кислот. [c.180]

    Алифатические карбоновые кислоты и их эфиры [21. Т. (1) превращают в анион, который алкилируется по Сг-метильной группе с образованием соединения (2). Затем кольцо 2-оксазолииа гидроли зуют нагреванием с 5—7%-ной спиртовой серной кислотой и получают этиловый эфир (3). Взаимодействие литиевой соли соединеиия [c.268]


    Помимо солей карбоновых кислот и сложных эфиров стероидов, лишь очень небольшое число алифатических соединений обладает мезогенными свойствами. Среди них алкадиен-2,4-карбоновая-1 кислота [26, 27], алкадиен-2,4-аль-1-азин [27], винилолеат [28] и алкил-стеараты [29]. [c.22]

    Скорость отверждения герметиков повышается при использовании о-толуидина, хлоридов и хлоратов олова и цинка, мочевины, тиомочевнны, меламина, метилолмочевины, солей ал-килтиокарбаминовых кислот, солей алифатических кислот с числом углеродных атомов не более пяти [128]. Активаторами являются карбоксилаты металлов I и II групп таблицы Менделеева или цинковые соли карбоновых кислот Се — Сю- Такие активаторы применяют вместе с пластификаторами типа простых полигликолевых эфиров, например с этоксилированными нонилфенолами. При использовании карбоксилатов в качестве активаторов вулканизацию полисульфидных олигомеров проводят диоксидом марганца, причем активатор, пластификатор и часть наполнителя смешивают в высокоскоростных аппаратах с получением вулканиз ощей пасты [129]. [c.52]

    Зелено-синие красители получают обработкой гидроксИламино-производных, например 4,8-дигидроксиламиноантраруфина, с формальдегидом в спиртовом растворе в присутствии медной соли. Эфиры соответственно замещенной антрахинон-2-карбоновой кислоты и полиалкиленгликольмоноалкилового эфира, в молекуле которых число атомов углерода в алифатическом радикале меньше 16, также являются красителями для ацетилцеллюлозы например, [c.928]

    При полиэтерификации применяются также смеси титан-органического соединения, например Т1(ОК)4 или (КО)зТ1— —О—Т1(ОР)з. где К - алифатический радикал С2-С18 или ароматический радикал С -С1д с цинковой солью органической кислоты 2п(ОСОК)2, где К - углеводородный радикал от С1 до С18 [71] (массовое соотношение соединений цинка и титана в смеси может меняться от 1 5 до 5 1, нреимушест-венно 1 2 и 2 1) литиевой соли карбоновой кислоты с органическим эфиром титановой кислоты или карбоксила-том титана каталитические системы оксалат олова-ацетат натрия (мольное соотношение 3 1), оксалат олова-ацетат натрия-ацетат цинка [72] смесь ацетатов цинка и натрия с нафтенатом циркония или оксалатом олова [73] смесь соединений титана с соединениями цинка, свинца и олова [74]. [c.27]

    Реакция серебряных солей карбоновых кислот и галогена, приводящая к образованию галогенпроизводного, содержащего на один атом углерода меныце, чем исходная соль карбоновой кислоты, известна под названием Реакции Хунсдикера. Сравнительно недавно опубликовано несколько обзоров, рассматривающих кар эту, так и некоторые другие сходные реакции [146, 147]. По реакции Хунсдикера получают отличные выходы галогенпроизводных из насыщенных алифатических кислот, содержащих от двух до восемнадцати атомов углерода. Наличие заместителей в любом положении, кроме а, не влияет па эту реакцию, за исключением тех случаев, когда они реагируют с образующимся в качестве промежуточного соединения ацилгипогалогеиитом. Серебряные соли галогензамещенных сложных эфиров, например серебряная соль -бромпропио-новой кислоты, образуют с бромом дибромиды [148]. Из серебряных солей эфиров кислот можио получить -галогензамещенные сложные эфиры, трудно доступные другими методами 149] [c.395]

    Анализ известных способов получения имидазолинов позволяет выделить два основных направления их синтеза. Первый путь предусматривает использование в качестве электрофиль-ных реагентов нитрилов, изонитрилов, иминоэфиров, амидинов, а второй — карбоновых кислот и их производных (низших алкиловых эфиров, амидов солей щелочных металлов, амидоаминов). В качестве нуклеофильных реагентов используют олигомеры полиэтиленамина (этилендиамин, диэтилентриамин, три-этилентетрамин и т. д.) или аминоспирты (моноэтаноламин, N-гидроксиэтилэтилендиамин). Этилендиамины применяют в виде оснований или солей с неорганическими кислотами, арил-сульфокислотами. При использовании в качестве электрофиль-ных реагентов нитрилов, иминоэфиров, амидинов процесс получения имидазолинов протекает в сравнительно мягких условиях с высоким выходом целевых продуктов. Недостатком данных процессов является сложность получения электрофильных реагентов и их неустойчивость. Для промышленного внедрения более перспективными являются методы синтеза имидазолинов, основанные на реакциях нуклеофильного присоединения этилен-диаминов по карбонильному атому углерода алифатических кислот или их производных (эфиров, амидоаминов). [c.349]

    По мере развития промышленности число новых химических соединений, применяемых в быту, в промышленной и сельскохозяйственной деятельности человека, резко увеличилось. Множество химических соединений различных классов самого разнообразного назначения или просто представляющих собой отбросы и побочные продукты химических производств попадают в сточные воды, в почву, а затем уносятся в естественные водоемы. К таким соединениям относятся альдегиды, кетоны, эфиры, карбоновые кислоты и их соли или эфиры, спирты, как алифатические, так и ароматические, нитро- и галоидпроиз-водные ароматических соединений и множество различных по строению детергентов или поверхностно-активцых веществ (ПАВ). [c.99]

    Алкиловый эфир терефталевой кислоты (1—4 атома в алкильном радикале), гликоль НО—(СН2) 0Н п = 2—10) Мономерные гликолевые эфиры терефталевой кислоты LiH — цинковая соль органической кислоты, растворимая в эфире [587] LiH — цинковая соль алифатической карбоновой кислоты (с числом атомов углерода < 18) или салициловой (молочной) кислоты [588] [c.1396]

    Если ожидается, что исследуемая смесь содержала полиол, углевод, соль карбоновой кислоты и какого-либо металла или соль органического основания, то образец смеси обрабатывают 2 н. НС1. Выпавший осадок, который тщательно отсасывают, промывают на фильтре водой и высушивают, может быть кислотой ароматического ряда выпадение масла может явиться свидетельством того, что в смеси присутствовала алифатическая кислота. Водный слой (фильтрат) мол<ет содержать растворимый в воде полиол или сахар. Если при действии на исследуемую смесь 2 н. НС1 выпадения твердого осадка или масла не наблюдается, раствор несколько раз экстрагируют эфиром и упаривают растворитель на водяной бане. Остаток может быть низшей жирной кислотой. Если в эфирной вытяжке из кислого раствора ничего не содержалось, к раствору добавляют 2 н. NaOH при этом соль органического основания, если она присутствовала, перейдет 1з свободное основание, которое может быть извлечено эфиром и выделено обычным образом. Оставшийся после экстрагирования эфиром водный слой может содержать как полилол, так и сахар наряду с хлоридом или сульфатом натрия. Удаление неорганических ионов можно осуществить с помощью ионообменных смол. [c.130]

    К первому классу относятся низкомолекулярные соединения дифильного характера, т. е. соединения, имеющие гидрофильную голову (одну или несколько полярных групп, например, —ОН, -СООН, -80зН, -ОЗОзН, -СООМе, (СНз)з1-, -КН ) и гидрофобный хвост (как правило, алифатическую цепь, иногда включающую и ароматическую группу). По своему применению ПАВ данного класса делятся на смачиватели, солюбилизаторы, эмульгаторы, моющие агенты, пенообразователи и т. д. По химическим свойствам они разделяются на 1) анионоактивные (например, соли карбоновых кислот, алкилсульфаты, алкилсульфонаты) 2) катионоактивные (например, четвертичные аммониевые основания, соли аминов) 3) неионогенные (спирты, эфиры и т. д.). [c.7]

    В химической структуре и функциональном действии присадок, обеспечивающих чистоту цилиндро-поршневой группы двигателя, свершилась эволюция от универсальных, которыми были сравнительно низкомолекулярные (С15 —Сзо) ПАВ с выраженной моющей функцией (аминоамиды жирных кислот и алифатических аминов), до высокомолекулярных (М. м. углеводородного радикала > 1000) с дифференцированным функциональным действием диспергирующим — для обеспечения чистоты карбюратора и впускного клапана (полимерные амины, а также сукцинимиды), моюще-диспергирующим — для предотвращения осадков в камере сгорания и забивания инжектора (оксиэтилированные амины, карбаматы, а также сложные эфиры). В составах современных бензинов используются присадки, снижающие содержание токсичных компонентов (RH, NO , SO и т. п.) в выхлопных газах. В значительной мере этому способствует применение антидетонаторов (как, например, ферроцен — циклопентадиенилкарбонил марганца) и моющих присадок на основе аминов, а также солей карбоновых кислот и сульфокислот, фенолятов щелочноземельных металлов, их комплексов с электронодонорными соединениями, перекисей, сложных эфиров, а также углеводородных полимеров. Тенденция уменьшения СО2 в атмосфере, в том числе и за счет топлив, а также серы в топливах приводит к ухудшению смазочных свойств, поэтому важное значение имеют противоизносные присадки. [c.186]


Смотреть страницы где упоминается термин Карбоновые кислоты соли алифатические эфиры: [c.66]    [c.248]    [c.227]    [c.353]    [c.651]    [c.45]    [c.167]    [c.175]    [c.32]    [c.270]    [c.400]    [c.353]    [c.101]    [c.183]    [c.283]    [c.101]    [c.101]   
Instrumental Methods of Organic Functional Group Analysis (1972) -- [ c.150 ]

Инструментальные методы анализа функциональных групп органических соединений (1972) -- [ c.150 ]

Инструментальные методы анализа функциональных групп органических соединений (1974) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Алифатические карбоновые кислот эфиры

Алифатические карбоновые кислоты и их соли

Алифатические эфиры

Карбоновые солей

Эфиры соли



© 2025 chem21.info Реклама на сайте