Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал влияние на кинетику электродной реакции

    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]


    Экспериментальные данные показали, что пассивирующую способность хромата цинка и смешанного хромата бария-калия по отношению к стали и магниевому сплаву можно сильно повысить при добавлении оксида цинка (рис. 8.8). Изучение кинетики электродных реакций в водных вытяжках хроматов и их смесей с оксидом цинка также показало, что добавление оксида цинка к смешанному хромату бария калия способствует увеличению анодной поляризации стали и, следовательно, уменьшает скорость анодного растворения (рис. 8.9), В вытяжке одного смешанного хромата сталь удается заполяризовать лишь до 600—700 мВ (после чего она переходит в активное состояние), а в вытяжке, полученной из смеси хромата с оксидом цинка, электрод можно заполяризовать анодно до потенциала 1400—1500 мВ. Благотворное влияние оксида цинка отмечено и в случае добавления его к хромату цинка. [c.133]

    На кинетику электродных реакций, а также на величину кинетических токов оказывает влияние и строение двойного электрического слоя. Это обусловлено тем, что скорость переноса электрона зависит от величины скачка потенциала между электродом и центром разряжающейся частицы, находящейся в плоскости двойного электрического слоя. При повышении концентрации фонового электролита значение у)/]-потенциала уменьшается и величина эффективного скачка потенциала в плотной части двойного слоя возрастает. При этом Еуг смещается к менее отрицательным потенциалам. Для нейтральных молекул это смещение равно изменению величины У1/]-потенциала  [c.473]

    Влияние строения двойного слоя на кинетику электродной реакции сказывается п через влияние потенциала диффузной части а )1 на концентрацию ионов в плотной части этого слоя. Ве- [c.368]

    На кинетику электродных процессов влияет р1-потенциал. Рассмотрим влияние 1)1-потенциала на скорость электрохимической реакции, когда окисленной формой вещества является г — зарядный катион, а восстановленной формой — атомы металла в амальгаме. [c.389]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]


    Скорость и механизм протекания химических реакций изучает химическая кинетика. Аналогично скорость и механизм протекания электрохимических реакций изучает электрохимическая кинетика, или кинетика электродных процессов. Особенностью электрохимических реакций служит влияние потенциала на их скорость. Любая электрохимическая реакция протекает минимум в три стадии а) подвод реагентов к электроду, б) собственно электрохимическая реакция, которая может включать в себя и химические реакции, в) отвод продуктов реакции от электрода. Если бы все эти стадии протекали мгновенно, то потенциал электрода при прохождении тока не изменялся бы и соответственно поляризация была бы равна нулю. Однако все три стадии протекают с конечными скоростями, причем одна из них лимитирует всю реакцию и для ее ускорения необходимо изменение потенциала электрода, т. е. поляризация. Следовательно, возникновение поляризации обусловлено замедленностью отдельных стадий электрохимического процесса. Соответственно в зависимости от характера замедленной стадии на электроде возникает или концентрационная, или электрохимическая поляризация..  [c.197]

    Состав и структура металлополимерных осадков определяются в первую очередь соотношением скоростей осаждения полимерных частиц и разряда металлических ионов. Скорости этих процессов зависят от концентрации полимера, электролита, поверхностно-активного веш,ества (ПАВ) — зарядчика частиц и режима электроосаждения. Наряду с адсорбцией ПАВ исключительно сильное влияние на электрохимическое выделение металла оказывает электрофоретическое осаждение полимера. Это показано на рис. 8. При введении ПАВ — дву-четвертичного аммониевого соединения — происходит сдвиг поляризационных кривых в область отрицательных значений потенциала на 0,3—0,4 В, а при электрофоретическом осаждении эпоксидного олигомера — до 2,5 В. Это свидетельствует о том, что наряду с адсорбционной поляризацией [20] важную роль играет электрофоретическая поляризация, т. е. поляризация за счет формирования электрофоретического осадка, характер которой, как показывают исследования кинетики формирования металлополимерного слоя, диффузионный [21]. Тормозящее действие полимера на протекание электродных реакций приводит к снижению содержания металла в металлополимерном осадке и к изменению его структуры. С увеличением концентрации полимера и электрокинетического потенциала размеры частиц металла уменьшаются от 2—3 до 0,2—0,5 мкм [22]. [c.117]

    На твердых электродах было изучено влияние различных органических веществ, адсорбирующихся главным образом физически, на реакцию выделения водорода [107, 158—163]. Наблюдалось ингибирование, вызванное, по-видимому, совместным влиянием блокировки поверхности и изменением фг-потенциала. Следует учитывать также проникновение в адсорбированную пленку (разд. 10 гл. IX). Попытка количественного разделения этих факторов предпринята не была, и, по-видимому, произвести такое разделение было бы трудно. Эти исследования не прибавляют много нового к нашим знаниям по кинетике электродных процессов, но они весьма ценны при объяснении причин ингибирования коррозии органическими добавками. Детали, имеющие практическое значение, можно найти в обширной литературе. [c.300]

    Торможения на стадиях транспортировки и чисто химического превращения приводят к изменению концентрации участников электродной реакции вблизи электрода . В результате этого изменяется равновесный потенциал электрода и появляется концентрационная поляризация. Кроме того, изменяется и концентрация частиц, участвующая в других стадиях электродного процесса, например в акте разряда, что следует учитывать при рассмотрении кинетики этих стадий. Влиянием концентрационной поляризации на кинетику электродного процесса в целом и на величину потенциала электрода под током можно пренебречь лишь при малых скоростях электрохимической реакции, т. е. при малых плотностях тока. При высоких плотностях тока, напротив, стадии доставки могут определять скорость всего суммарного электродного процесса. [c.299]

    Торможения на стадиях транспортировки и чисто химического превращения приводят к изменению концентрации участников электродной реакции вблизи электрода . В результате этого изменяется равновесный потенциал электрода и появляется концентрационная поляризация. Кроме того, изменяется и концентрация частиц, участвующих в других стадиях электродного процесса, например в акте разряда, что следует учитывать при рассмотрении кинетики этих стадий. Влиянием концентрационной поляризации на кинетику электродного процесса в целом и на величину потенциала электрода под током можно пренебречь лишь при малых скоростях [c.317]

    Из кинетического вывода уравнения для равновесного потенциала видно, что строение двойного слоя, оказывающее влияние на скорость электродной реакции через фь не влияет на равновесное значение потенциала, т, е. на величину максимальной работы (разность термодинамических потенциалов в начальном и конечном состояниях). Вследствие этого термодинамическое выражение для потенциала и содержит активность (или концентрацию) ионов в объеме раствора, вне пределов двойного слоя. Вместе с тем строение двойного слоя оказывает серьезное влияние на кинетику процесса. [c.402]


    В первой части дан необходимый минимум информации о кинетике электродных процессов (на металлах) и влиянии потенциала на их скорость, причем уже здесь по ходу изложения вводятся некоторые понятия и элементы потенциостатических измерений. Читатели, достаточно знакомые с общими положениями электрохимической кинетики, но не изучавшие процессов растворения и пассивации металлов, могут начать ознакомление с книгой с последней главы этой части, где описаны главные особенности зависимости скорости реакции ионизации металлов от потенциала, наиболее часто являющейся предметом потенциостатических коррозионных исследований. Наконец, читатели, знакомые по литературе и с этими вопросами, но не имеющие собственного опыта потенциостатических измерений, могут ограничиться второй и третьей частями, где отражены основные методические вопросы. Четвертая часть полностью [c.7]

    Хемосорбированные частицы, находясь в поле двойного слоя, должны оказывать сложное влияние на кинетику электродного процесса [37—50, 25, 13]. Их взаимодействие с неидентичными им атомами подложки будет приводить к перераспределению электронных облаков партнеров — эффективному оттягиванию зарядов. В случае анодных процессов на инертных электродах из-за большей электроотрицательности образующихся кислородсодержащих частиц на них окажется некоторый отрицательный, вероятнее всего в среднем по времени нецелочисленный заряд, т. е. появится характерный дипольный скачок потенциала, приводящий к перераспределению перенапряжения и уменьшению скачка потенциала в слое Гельмгольца. Вместе с тем степень заряженности таких хемосорбированных частиц при изменении поля (с изменением потенциала в достаточно широких пределах) может изменяться, что приводит к выводу об изменении их энергии адсорбции на электроде и, соответственно, изменению реакционной способности с потенциалом. В результате в выражение скорости любой элементарной реакции с участием (образованием или потреблением) таких псевдо-нейтральных частиц войдет дополнительный член, искажающий обычную тафелевскую зависимость тем сильнее, чем больше изменение энергии адсорбции с потенциалом, т. е. чем уже область потенциалов, где происходит перезарядка хемосорбированных частиц. Форма соответствующего математического выражения весьма сложна и существенно зависит от вида функции где А, — эффективный заряд хемосорбированной частицы, -ф — ее потенциал (частично входящий в общее перенапряжение т)). Простейшее выражение такого типа давалось в [39]. Более обоснованная (но значительно более сложная) зависимость, учитывающая вероятностной характер процесса стягивания заряда, проанализированная с помощью ЭВМ, оказалась, как и наблюдается на практике, сочетанием тафелевских прямых с более или менее выраженной переходной областью — от области излома прямых до появления участка пассивационного торможения процесса [46]. [c.139]

    Генерация активных частиц на поверхности электрода при высоких потенциалах может происходить путем адсорбционного взаимодействия с компонентами химической среды или через разряд и хемосорбцию разрядившихся частиц, как правило, радикального характера. В этом случае, как это показано в разделе 1 настоящей статьи, в обычные закономерности классической электрохимической кинетики, связывающей структуру двойного электрического слоя со скоростью электродной реакции (1), включается влияние усложнившейся поверхности раздела электрод/раствор за счет хемосорбированных частиц дипольного характера [32]. Благодаря меньшему влиянию электрического поля на снижение энергии активации в электродных реакциях при такой структуре скачка потенциалов резко уменьшается коэффициент переноса, увеличивается перенапряжение таких процессов, как выделение кислорода, и в то же время появляется возможность возникновения электродных реакций, требующих высокого значения потенциала. В то же время общие законы разряда частиц на электроде остаются неизменными, хотя в уравнения кинетики включаются дополнитель- [c.166]

    Адсорбция органических ионов наряду с ингибирующими эффектами, зависящими от заполнения поверхности, оказывает влияние на кинетику электродных процессов и через изменение распределения зарядов в двойном электрическом слое. Примеры таких эффектов приведены в работе Кута [9]. В общем случае необходимо учитывать непосредственное действие зарядов адсорбирующихся ионов на реагирующие частицы, вытеснение адсорбирующимися ионами ионов фона, входивших в состав двойного слоя, ненарушенного процессом адсорбции, и заполнение части поверхности адсорбирующимися ионами. Сочетание этих факторов может привести к сложной картине и переходам от торможения реакции к ее ускорению при изменении потенциала или концентрации адсорбирующегося вещества, как это видно, например, на рис. 1 (по данным Николаевой-Федорович [10]). Естественно, что в случае реакций с участием заряженных частиц максимальное торможение [c.303]

    Электродные реакции комплексов металлов широко используют в промышленности и технике (гидроэлектрометаллургия, гальваностегия, химические источники тока), они определяют скорость растворения и коррозию металлов и, кроме того, составляют основу ряда электроаналитических методов. Наряду с большим практическим значением эта группа электродных реакций представляет значительный интерес для проблем электрохимической кинетики, поскольку переносу электронов в электрохимических стадиях всегда предшествует та или иная реорганизация координационной сферы исходных комплексов. Заключение о ее характере обычно делают на основании количественных характеристик электродных реакций комплексов металлов и их электрохимических и возможных химических стадий. При этом, естественно, учитывается влияние процессов массопереноса, потенциала и материала электрода, строения двойного электрического слоя, процессов адсорбции и других факторов на скорость суммарного электродного процесса. [c.5]

    У потенциостатов, используемых при изучении кинетики электродных процессов, время задания постоянного потенциала i должно быть минимальным, поскольку чем оно меньше, тем больше величина диффузионного предельного тока [уравнение (4.64)], и большее влияние на форму зависимости будет оказывать электрохимическая реакция. Время установления потенциала у современных электронных потенциостатов составляет около 10" сек. Следовательно, зависимость / — получаемая при =10 —10 сек, может быть использована [c.90]

    Скорость и механизм протекания электрохимических реакций изучает электрохимическая кинетика, или кинетика электродных процессов. Особенностью электрохимических реакций служит влияние потенциала на их скорость. Любая электрохимическая реакция протекает минимум в три стадии а) подвод реагентов к электроду б) собственно электрохимическая реакция, которая может включать в себя и химические реакции  [c.280]

    Скорость и механизм протекания электрохимических реакций изучает электрохимическая кинетика, или кинетика электродных процессов. Особенностью электрохимических реакций служит влияние потенциала на их скорость. Любая электрохимическая реакция протекает минимум в три стадии  [c.204]

    В электрохимической кинетике описание электродных процессов неразрывно связано с представлениями о строении двойного электрического слоя. Течение реакции на электроде, например, сопровождается прохождением заряженной частицы (иона или электрона) через двойной электрический слой либо из объема раствора к электроду, либо в обратном направлении. При этом заряженная частица будет испытывать влияние поля двойного слоя. В случае же термодинамического описания процесса важно не само строение двойного электрического слоя, а общий скачок потенциала, который может быть одним и тем же при разном строении двойного элект-рического слоя. [c.230]

    Приведенные уточнения теории замедленного разряда позволили объяснить большое количество экспериментальных данных о влиянии состава раствора на величину водородного перенапряжения, а также на кинетику других электродных процессов. Из теории замедленного разряда следует, что перенапряжение водорода с ростом концентрации водородных ионов уменьшается. Из уравнения (Х1П.36) также видно, что при положительном потенциале г) скорость реакции при заданном ф понижается по сравнению с теми значениями, которые получались бы при 1 )1 = 0. Изменение потенциала вызываемое введением поверхностно [c.344]

    Влияние строения двойного слоя на кинетику электродной реакции сказывается и через влияние потенциала диффузной части ( )1 на концентрацию ионов в плотной части этого слоя. Величина С в уравнениях (1Х,,9) и (IX, 10) связана, как уже было указано, с концентрацией С в объеме раствора уравнением (VIII, 1) [c.401]

    Влияние адсорбции реагирующего органического вещества на кинетику электродной реакции (без учета концентрационной поляризации) было рассмотрено в общем виде в работе Д. Мохилнера и П. Делахея[491 эти авторы использовали идеи, высказанные впервые в работе А. Н. Фрумкина [50]. Применив теорию адсорбции Фрумкина, мы получили следующее выражение для зависимости скорости электродной реакции (г) от потенциала Е  [c.33]

    Таким образом, мы пришли к выводу о том, что химический потенциал электрона, энергия сольватации ионов, абсолютная величина гальвани-скачка потенциала не влияют на перенапряжение электродной реакции. Этот вывод может показаться странным, поскольку энергия участников реакции должна сказываться на энергетике процесса и, следовательно, на потенциале электрода, влияние же скачка потенциала на скорость электродной реакции является основной закономерностью электрохимической кинетики. Однако это противоречие только кажущееся. Дело в том, что мы не можем экспериментально измерить абсолютную разность потенциалов металл/раствор или химический потенциал заряженной частицы в какой-то фазе. Если бы мм могли измерить абсолютный скачок потенциала и сравнить разные металлы (или разные растворители) при одинаковом гальвани-потенциале металл/раствор, то мы, разумеется, обнаружили бы изменение свободной энергии процесса, равное изменению химического потенциала электрона (или соответственно изменению энергии сольватации иона). Однако экспериментально мы можем измерить лишь потенциал относительно какого-то электрода срав- [c.25]

    При выборе метода измерений потенциала мы вынуждены былп считаться с медленностью установления адсорбционного равновесия на электроде. По этим соображениям быстрый метод измерений, использованный в работах многих авторов (3. А. Иофа, Б. Н. Кабапов и др.), нами пе мог быть принят этот метод рассчитан скорее на то, чтобы исключить влияние адсорбционных изменений на кинетику электродной реакции. [c.372]

    Адсор бция поверхностно активных веществ как фактор, влияющий на кинетику электродных процессов, подробно рассматривалась в предыдущих главах. Здесь достаточно указать, что адсорбционный слой, тормозящий разряд металлических ионов, неминуемо должен тормозить и обратную реакцию ионизации, причем каждое поверхностно активное вещество должно по-разному влиять на электрокристаллизацию и анодное растворение металла. Такой вывод вполне естествен, поскольку сама адсорбция поверхностно активных веществ, а значит, и состояние адсорбционного слоя, как правило, зависят от потенциала ионного слоя. Поэтому влияние одного и того же вещества на процессы электрокрнсталлизации и растворения металлических ионов, особенно при больших поляризациях, может оказаться резко различным. Наиболее вероятно проявление подобных различий в тех случаях, когда равновесный потенциал электрода лежит вблизи его потенциала нулевого заряда. [c.391]

    Книга представляет собой краткое изложение теоретических основ и практического использования одного из современных высокоинформативных электрохимических методов — вольтамперометрии с линейной и треугольной разверткой потенциала. Рассматривается теория электродных процессов, контролируемых скоростями диффузии, переноса заряда, кинетикой предшествующих, последующих, каталитических химических реакций и последовательных электрохимических стадий. Детально разбираются критерии определения лимитирующей стадии электродного процесса. Подробно излагаются вопросы влияния адсорбции электроактивных веществ на форму и параметры вольтамперных кривых. Даны примеры исследования электродных процессов. Глава УП раздела первого издания Осциллографические полярографы написана канд. техн. наук Р. Ф. Салихджановой. В этой главе рассматриваются блок-схемы и принципы действия отдельных узлов и блоков осциллополярографов, а также дается описание серийных отечественных и зарубежных специализированных приборов, в которых одним из режимов работы является осциллографический. Таким прибором является, например, отечественный полярограф ППТ-1. [c.3]

    По-видимому, легче было бы работать на электроде с постоянной поверхностью, например на висящей ртутной капле, так чтобы устанавливалось адсорбционное равновесие. Измерение стационарных значений тока в перемешиваемом растворе при работе с жидким электродом осуществить трудно. Можно избежать размешивания и дать установиться адсорбционному равновесию при потенциале, при котором электродная реакция практически не идет, например при равновесном потенциале редокс-системы с большим toкoм обмена. Кинетику электродного процесса в таком случае можно изучить по реакции электрода на изменение плотности тока или потенциала. Степень заполнения при этом не должна заметно меняться, поэтому метод применим к быстрым процессам в области малых перенапряжений (несколько милливольт) или же к измерениям, при которых смещение потенциала не выходит за границы верхнего плато на кривой зависимости степени заполнения от потенциала. Эти требования исключают применение упомянутого метода в случае многих реакций. Изучение влияния адсорбции на сравнительно быстрые процессы релаксационными методами и методами, основанными на нарущении стационарного режима (с малой амплитудой колебаний потенциала), по-видимому, представляет собой простейший путь для выяснения двойнослойных эффектов в случае незаряженных адсорбатов. Уже проведено несколько исследований, посвященных главным образом влиянию степени заполнения. Арамата и Делахей [18] учли как изменение фг-потенциала, так и изменение степени заполнения. Эту работу продолжил Торси [128] в лаборатории автора. Пожалуй, это была первая попытка количественного изучения, если исключить описанные в разделе 10, в гл. X работы чехословацких исследователей, в которых учтена и диффузия. [c.254]

    Влияние строения двойного электрического слоя на кинетику электродного процесса впервые количественно было рассмотрено А. Н. Фрумкиным [1] на примере реакции разряда ионов водорода. Фрумкин показал также необходимость учета адсорбции реагирующих частиц на электроде. Возможность влияния адсорбции органических соединений на ход кривых зависимости силы тока (/) от потенциала (Е) отметил П. Герасименко [2] еще в 1929 г. Впервые на связь между адсорбцией органических веществ и кинетикой их электрохимического восстановления указал Л. И. Антропов [3, 4]. Роль поверхности катода и адсорбции восстанавливающегося вещества при электрохимическом восстановлении ароматических нитросоединений была рассмотрена в работах Н. А. Изгарышева и М. Я. Фиошина [5, 6]. [c.23]

    Электрохимическое и коррозионное поведение металлов в присутствии ванадатов различно и зависит от состава последних. Поведение ортованадата натрия NaзV04 ничем не отличается от поведения рассмотренных выше ингибиторов с обшим анионом типа М02 (рис. 5,16а), а поведение метаванадата натрия ЫаУОз, наоборот, существенно отличается. Метаванадат по мере увелц-чения его концентрации в растворе непрерывно уменьшает скорость коррозии, не приводя к увеличению ее интенсивности. При концентрации 0,25 моль/л коррозия стали в 0,1 н. N32804 полностью приостанавливается (рис. 5,166). Такое удивительное поведение ингибитора связано с тем, что он не выводит из сферы анодной реакции часть поверхности электрода, пока металл не переходит полностью в пассивное состояние. Растворение происходит по всей поверхности. Этот ингибитор не косвенно, а непосредственно влияет на кинетику анодной реакции эффективность катодного процесса при этом не изменяется, что сказывается на характере изменения потенциала (см. рис. 5,16 6). В широкой области концентраций метаванадат натрия не оказывает влияния на электродный потенциал последний остается таким же, как и в фоновом электролите. При этом различным скоростям растворения соответствуют одинаковые значения потенциала. [c.171]

    Слабое изменение потенциала в широкой области концентраций МаВОз, сопровождаюшееся увеличением скорости коррозии, требует специального исследоваиия. Оно может наблюдаться в случае, когда ингибитор ускоряет одну из коррозионных электродных реакций или обе сразу в одинаковой степени. Судя по тому, как этот ингибитор частично пассивирует электрод (см. рис, 2,17), эффект от увеличения эффективности обычного катодного нроцесса восстановления кислорода невелик. Поэтому не исключено, что ЫаВОз оказывает непосредственное влияние на кинетику катодной реакции, участвуя в процессе деполяризации. При больших концентрациях ингибитора (0,1 моль/л) наступает резкий сдвиг потенциала в анодную сторону, который сопровождается падением скорости коррозии. Это однозначно указывает на замедление ингибитором анодной реакции. [c.188]

    Сопоставление закономерностей, выявленных температурнокинетическим методом и при помощи вращающегося дискового катода, указывает на изменение характера поляризации суммарного электродного процесса в фосфатном растворе с повышением потенциала катода. Так, при потенциалах ветви I кривой проявляется совместное влияние концентрационной и химической поляризации. Это подтверждает предположение о влиянии реакции ионизации кислорода и пассивирования поверхности катода на кинетику электродного процесса. [c.170]

    Недостатком гальваностатических методов является большее и непрерывное влияние заряжения двойного слоя. Это, как упомянуто выше, одна из основных причин очень ограниченного применения хронопотеициометрии в аналитической работе, где значительный интерес представляют низкие концентрации и вследствие этого токи заряжения. Исследования кинетики электродных процессов с использованием хронопотеициометрии обычно можно выполнить при концентрациях выше 10 М, когда соотношение фарадеевского тока к току заряжения относительно благоприятно. В потенциостатическом эксперименте заряжение двойного слоя происходит в самый начальный момент эксперимента. В гальваностатическом варианте регулируемый ток делится между фарадеевским процессом и процессом заряжения, и так как потенциал изменяется в течение всего эксперимента, то заряжение двойного слоя происходит непрерывно и к тому же так, что компенсировать его трудно [53]. Например, если наложить постоянный ток /, то ток, идущий яа фарадеевскую реакцию, будет равен [c.506]

    Необходимо, наконец, отметить, что применение принципа л. с. э. к электродным процессам в полярографии имеет менее строгие предпосылки, чем его примёнение для гомогенных химических реакций, к которым он первоначально был приложен. Наряду с некоторыми каталитическими реакциями электродные реакции являются первым примером гетерогенного процесса, к которому применены уравнения л. с. э. Но здесь наряду с факторами строения молекул существенную роль играют факторы электрохимической кинетики — строение двойного слоя, адсорбируемость молекул, деформация связей и т. д., которые явно не коррелируются с электронным строением молекулы. В частности, высказывались соображения [97], что для выполнения уравнения л. с. э. величина г] -потенциала должна быть мала в противном случае следует внести поправку на г -потенциал [98]. Было высказано мнение [99], что уравнения л. с. э. должны применяться не к значениям д, а к значениям констант скорости электродного процесса кь, экстраполированным к условиям, в которых о = о, т. е. к электрокапил-лярному нулю. Систематических наблюдений над влиянием этих факторов на Ег, , однако, нет. Они должны быть поставлены в будущем, так же как и должны быть поставлены опыты с повышением температуры, подбором растворителя и быстрокапающего капилляра для предотвращения адсорбции компонентов электродной реакции и получения истинных значений р -констант. [c.111]

    Вступление химии электродных процессов, или, как ее иначе называют, электродики , в современную стадию развития происходит во многих направлениях. В настоящее время кинетика электродных процессов трактуется с формальной полнотой в соответствии с кинетикой, разработанной в других областях для описания последовательных химических реакций, и ее место как части физической химии гетерогенных реакций достаточно выяснено. Старый эмпирический подход к решению прикладных коррозионных задач уступает в настоящее время место более глубокому пониманию процессов растворения, электрохимического окисления и пассивации металлов на основе электродной кинетики. Влияние потенциала на протекание электрохимических реакций рассматривается аналогично влиянию давления на кинетику гомогенных химических реакций в конденсированных фазах. Начинает учитываться связь между электрокатализом и свойствами материала электрода, рассматриваемого как гетерогенный катализатор, а также адсорбционное поведение промежуточных частиц и реагентов на поверхности, что обеспечивает научную основу для быстрого развития технологии прямого электрохимического превращения энергии. Двойной слой более не трактуется просто как аналог плоского конденсатора, а следовательно, становится более ясной роль адсорбции и ее связь с электродной кинетикой. Полупроводники перестали быть объектом изучения только физики твердого тела, поскольку стали рассматриваться свойства их поверхности, находящейся в контакте с раство- [c.8]

    Последние уравнения позволяют приближенно рассчитать ifo-потенциал и часто используются для интерпретации результатов по влиянию строения двойного электр щеского слоя на кинетику электродных процессов. Так как г о-потенцнал рассчитывается из теории Гуи — Чапмена, а прн рассмотрении кинетики реакций можно лишь предполагать, из какой плоскости происходит разряд частиц, то в дальнейшем будем использовать обозначение if -no-теициал . [c.237]


Смотреть страницы где упоминается термин Потенциал влияние на кинетику электродной реакции: [c.143]    [c.185]    [c.227]    [c.547]    [c.185]   
Теоретическая электрохимия (1959) -- [ c.488 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.486 , c.488 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика электродных реакций

Потенциал реакции

Потенциал электродный потенциал

Электродные кинетика

Электродные потенциалы реакции

Электродные реакции

Электродный потенциал



© 2025 chem21.info Реклама на сайте