Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклоалканы изомеризация

    Изомеризация циклоалканов. Циклоалканы изомеризуются под действием тех же катализаторов кислотного типа, что и алканы, а также гидроизомеризу-ются на бифункциональных катализаторах. Условия изомерных превращений циклоалканов в целом близки к условиям изомерных превращений алканов. Идентичны также виды каталитических ядов и промоторов. [c.81]

    Превращения циклоалканов. Скорость каталитического крекинга циклоалканов близка к скорости крекинга алканов с равным числом атомов углерода. Основными реакциями циклоалканов являются раскрытие кольца с образованием алкенов и диенов дегидрирование, ведущее к образованию аренов изомеризация циклов и боковых цепей. [c.336]


    Изомеризация семичлеиных и дясятичленных циклов приводит к образованию соответствующих устойчрвых декалинов. Механизм этого процесса, а также превращений циклоалканов при каталитическом риформинге изложен в гл. 12. [c.145]

    Процесс изомеризации циклопентанов непосредственно в бензиновых фракциях газоконденсатов и нефтей, содержащих более 20—50 % циклоалканов, в том числе 1/2 1/3 циклопентанов, особенно интересен в сочетании с последующим дегидрированием изо-меризатов циклогексанов и селективной экстракцией аренов. По-видимому, вместо дегидрирования возможно выделение циклогексанов из изомеризата комплексообразованием с тиокарбамидом [66], [c.214]

    ПРИМЕНЕНИЕ ХЛОРИСТОГО АЛЮМИНИЯ В РЕАКЦИЯХ ИЗОМЕРИЗАЦИИ ЦИКЛОАЛКАНОВ. ИЗОМЕРИЗАЦИЯ ШЕСТИЧЛЕННЫХ ЦИКЛОАЛКАНОВ [c.47]

    Так, реакция каталитического гидрирования имеет аналитическое значение для гетероатомных соединений, которые переводятся таким образом в сравнительно легко анализируемые углеводороды. Комбинирование реакции дегидрирования циклоалканов до аренов со скелетной изомеризацией пятнчлснных циклоалканов, которая протекает с расширением цикла, позголило дать полную характеристику различных типов циклоалканов в нефтяных фракциях. [c.80]

    Соотношение между реакциями (1) — (4) устанавливается в зависимости от термодинамических и кинетических факторов, а также зависит от активности катализатора. Наиболее желательной,,. процессе риформиига является аро латизация циклоалканов (реакция 1). Выход аренов возрастает с повышением температуры и снижением давления. При высокой кислотной активности катализатора возрастает роль изомеризации (2), ведущей к превращению циклогексана в циклопснтап. [c.254]

    В работах Го и сотр. [245—247] исследовались механизмы гидрогенолиза и изомеризации циклоалканов и алканов на металлах и их сплавах. Изучены [245, 246] превращения 1,1,3-триметилцикло-пентана в присутствии пленок Р1, Рс1, Со, Ре, N1, КЬ и XV. Относительные скорости деметилирования с образованием гел -диметилцик-лопентана и метана зависят от металла и температуры. Р1 и Рс1 оказались наилучшими катализаторами дегидроизомеризации в арены, Р1 является наиболее селективным катализатором образования ксилолов Рс и КЬ (как и Ре) дают смесь продуктов с преобладанием толуола, для N1 характерно образование низших (Сг—Се) алканов, для Со — образование метана. Полагают, что образование ксилолов происходит путем расширения пятичленного кольца при четвертичном углеродном атоме с образованием а,а,у-триадсорбирован-ных соединений и адсорбированного трехчленного цикла в качестве промежуточных продуктов. [c.168]


    Первые исследования реакций изомеризации алкилароматических углеводородов были проведены Фриделем и Крафтсом (1882 г.), циклоалканов — В. В. Мар-коввиковым, Н. М. Кижнером, И. Д. Зелинским (90-е годы XIX в.), алкенов — [c.68]

    Исследования строения и идентификация индивидуальных циклоалканов нефтей и их фракций сопряжены с большими трудностями из-за крайне незначительных различий свойств изоалканов и гомологов циклоалканов, не разделяющихся при ректификации и хроматографии. Требуется осуществлять многократные превращения циклоалканов с помощью реакций изомеризации, дегидрирования, деструкции в углеводороды других классов, поддающихся анализу известными методами. [c.208]

    Механизм изомерных превращений циклоалканов близок к механизму изомеризации алканов. В присутствии кислотных катализаторов при О—140 О процесс изомеризации сопровождается образованием карбкатионов  [c.71]

    Циклоалканы С5 и Се достаточно устойчивы, однако под влиянием хлорида и бромида алюминия подобно алканам претерпевают изомеризацию, причем происходит расширение или сужение цикла. Так, циклогексан превращается при 30—80°С в метилциклопентан. Реакция не протекает юличественно слева направо она останавливается в момент, когда состав смесн соответствует 75% циклогексана и 25% метилцик.юпентана. Пяти- и шестичленные углеродные циклы образуются значительно легче, чем меньшие и большие циклы. Поэтому в нефтях встречаются многочисленные производные циклогексана и циклопентана, в то время как производные остальных циклоалканов встречаются реже. [c.138]

    На бифункциональных катализаторах при изомеризации циклоалканов в качестве побочных продуктов образуются соединения бензола. [c.71]

    С точки зрения своего механизма изомеризация циклоалканов представляет собой внутримолекулярную ионную перегруппировку, протекающую чаще всего по типу 1,2-смещения  [c.153]

    Нафтеновые углеводороды при каталитическом риформинге также подвергаются изомеризации, дегидрированию до ароматических углеводородов и гидрокрекингу. Шестичленные нафтены изомеризуются в пятичленные. Однако в основном наблюдается дегидрирование нафтенов с образованием бензола и его гомологов. Бициклические шестичленные циклоалканы также легко дегидрируются с образованием производных нафталина. Гидрокрекинг шестичленных циклоалканов происходит в незначительной степени. Скорость дегидрирования шестичленных циклоалканов значительно выше скорости изомеризации в пятичленные и гидрокрекинга. Поэтому они практически на 100% превращаются в ароматические углеводороды. Пятичленные замещенные циклоалканы в условиях риформинга вступают в реакции изомеризации по изменению положения заместителей в кольце, дегидроизомеризации с образованием бензола и его гомологов и гидрокрекинга с раскрытием кольца и образованием н-гексана. Скорость реакции дегидроизомеризации метилциклопентанов выше, чем изомеризации и гидрокрекинга. Поэтому выход бензола при риформинге метилциклопентана достигает 60+70%. [c.70]

    В присутствии кислотных катализаторов расщепление кольца в пяти- и шестичленных циклоалканах происходит лишь в небольшой стенени (см. гл. 12). В основном наблюдается изомеризация шестичленных циклоалканов в пятичленные. [c.295]

    Реакция дегидрирования широко используется для изучения индивидуального и группового состава циклоалканов различных фракций нефти, а также лежит в основе промышленного процесса облагораживания прямогонных бензинов каталитического риформинга [68]. При риформинге одновременно протекают процессы дегидрогенизации гексанов, дегидроциклизации нормальных алканов и изомеризации пятичленных циклоалканов в шестичленные. Риформинг проводится при 480—500 °С, давлении 3,6—4,0 МПа. Применяется бифункциональный катализатор АП-64, содержащий [c.215]

    При каталитическом крекинге образуется меньшее количество газов (метана, этана) и больше жидких углеводородов (С5—Сю), чем при термическом крекинге. Полученный бензин содержит меньше непредельных, больше ароматических углеводородов, образующихся в результате циклизации и дегидрирования алканов, и больше изоалканов. Изоалканы получаются в результате изомеризации и гидрирования первично образующихся при крекинге алкенов (необходимый водород получается при образовании ароматических углеводородов из циклоалканов в присутствии катализатора). [c.57]

    Все в больших масштабах используют процессы каталитического риформинга для повышения октанового числа бензинов прямой гонки, а также для производ-, ства ароматических углеводородов. В одном из процессов риформинга — платформинге — на платиновом катализаторе происходит дегидрирование циклоалканов до ароматических углеводородов, изомеризация н-алканов в изоалканы и в меньшей степени циклизация н-алканов с последующим дегидрированием до ароматических углеводородов. [c.58]

    Использованием катализаторов (алюмомолибденовый или платина на окотде алюминия) гфИ высокой температуре (500...700 °С) и давлении (10...40 атм.) осуществляют процеож так называемого каталитического риформинга. При этом протекают реакции циклодегидрогенизации алканов (1), дегидрирования и изомеризации циклоалканов (2), (3), Таким же образом получается толуол (4)-(7)  [c.153]


    Селективность преврагцения циклоалканов в арены практически 100%. Незамещенные арены в условиях процесса риформинга устойчивы. Метилзамещенные арены (толуол, ксилолы) подвергаются диспропорционированию или изомеризации по положению заместителей. В условиях риформинга на металлическом катализаторе происходит также деалкилирование метилзамещенных аренов. В результате образуются метан и бензол. Бициклические шестичленные циклоалканы дегидрируются так же легко, как моноциклические, образуя производные нафталина. Гидрокрекинг шестичленных циклоалканов происходит в незначительной степени. [c.131]

    При риформинге алканы подвергаются изомеризации, дегидроциклизации и гидрокрекингу. С наибольшей скоростью идут реакции дегидрирования шестичленных циклоалканов в арены, изомеризации н-алканов в изоалканы и метил циклопентанов в циклогексаны. Наиболее медленно протекают дегидроциклизация и гидрокрекинг алканов. [c.131]

    В этом разделе обсуждаются реакции изомеризации углеродного скелета напряженных циклоалканов. Реакции этого типа рассматриваются в обзоре Манго [269] совместно с многочисленными перициклическими реакциями. В настоящий раздел включены также реакции с-граяс-изомеризации алкенов, протекающие через <т-связанные промежуточные металлорганические соединения. Некоторые специфические процессы изомеризации, характерные для алкадиенов, например, изомеризация 4-винилциклогексена в циклооктадиен-1,5, протекающая через промежуточное л-аллнльное производное, рассматриваются в связи с более общей проблемой образования углерод-углеродных связей (см. разд. 15.6.2.1 и [c.332]

    Изомеризация напряженных циклоалканов [c.332]

    Химические методы разделения основаны на различной реакционной способности компонентов в реакциях гидрирования, дегидрирования, сульфирования, изомеризации, галогенирова-ния и т. д. Так, реакция каталитического гидрирования имеет аналитическое значение для гетероатомных соединений, которые переводят таким образом в сравнительно легко анализируемые углеводороды. Комбинирование реакции дегидрирования циклоалканов до аренов со скелетной изомеризацией пятичленных циклоалканов, которая протекает с расширением цикла, позволило дать полную характеристику различных типов циклоалканов в нефтяных фракциях. [c.99]

    Существует три вида изомеризации циклоалканов структурная скелетная без изменения числа атомов углерода в цикле [c.238]

    Превращения циклоалканов. В условиях риформинга циклоалканы также подвергаются изомеризации, дегидрированию до аренов и гидрокрекингу. [c.348]

    Гидрокрекинг шестичленных циклоалканов происходит в незначительной степени по схеме, описанной для алканов. В условиях риформинга скорость дегидрирования шестичленных циклоалканов в арены значительно выше скорости других реакций (изомеризации в пятичленные и гидрокрекинга). Поэтому селективность превращения циклоалканов в арены составляет практически 100 %. [c.349]

    С наибольшей скоростью идут реакции дегидрирования шестичленных циклоалканов в арены, изомеризации н-алканов в изоалканы и метилциклопентанов в циклогексаны. Наиболее медленно протекают дегидроциклизация и гидрокрекинг алканов (табл. 13.3). [c.351]

    С увеличением объемной скорости преобладающую роль в процессе риформинга начинают играть быстроидущие реакции дегидрирования циклоалканов, гидрокрекинга тяжелых алканов и изомеризации углеводородов. Роль реакций дегидроциклизации алканов, деалкилирования аренов и гидрокрекинга легких углеводородов снижается. В результате изменения соотношения между различными реакциями выход бензина возрастает, но его октановое число уменьшается. [c.355]

    На катализаторах с высокой кислотностью и низкой гидрирующей активностью протекают в основном реакции изомеризации шестичленных циклоалканов в пятичленные и по положению заместителей. Расщепление кольца происходит лишь в небольшой степени. Высокая устойчивость циклоалкановых колец при гидрокрекинге на катализаторах с высокой кислотной активностью объясняется тем, что для образующегося при распаде кольца карбкатиона обратная реакция протекает быстрее, чем дальнейший распад по р-правилу или стабилизация за счет отрыва гидрид-иона от исходной молекулы [c.382]

    Пиролиз — процесс высокотемпературного термического разложения углеводородного сырья. Термическое разложение углеводородов можно представить как ряд последовательно и параллельно протекающих химических реакций, в результате которых образуется большое число продуктов. На первой стадии идут первичные реакции расщепления алканов и циклоалканов, на второй — образовавшиеся алкены и диены подвергаются реакциям дегидрирования, дальнейшего расщепления и конденсации с образованием циклических ненасыщенных и ароматических углеводородов. При этом первичные реакции термического разложения исходных веществ можно рассматривать как реакции первого порядка. В условиях пиролиза реакции разложения углеводородов осуществляЕотся в газовой фазе через образование свободных радикалов по моно- и бимолекулярному механизмам. С участием радикалов имеют место реакции замещения, присоединения, раснада, изомеризации, рекомбинации и диспропорционирования. [c.802]

    Термин изомерия введен в органическую химию Берцелиусом в 1830 году. Это явление впервые объяснил А.М. Бутлеров. Первая монография Об изомерии органических соединений В.В. Марковникова опубликована в 1865 году. Изомеризация циклоалканов изучалась В.В. Марковниковым, Н.М. Кижнером и Н.Д. Зелинским в конце ХЕХ века. Впервые реакция изомеризации алкилароматических углеводородов описана Фриделем и Крафтсом (1882 г.), а каталитическая изомеризация бутиленов — в начале XX века В.Н. Ипатьевым. Каталитическая изомеризация бутана описана Не-ницеску и Драганом (1933 г.), а таюке Б.Л. Молдавским. [c.890]


Смотреть страницы где упоминается термин Циклоалканы изомеризация: [c.256]    [c.75]    [c.80]    [c.89]    [c.134]    [c.251]    [c.3]    [c.70]    [c.94]    [c.258]    [c.153]    [c.148]    [c.159]    [c.162]    [c.239]   
Органическая химия (1990) -- [ c.171 , c.173 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Циклоалканы



© 2025 chem21.info Реклама на сайте