Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения, основанные на химических реакциях

    Абсорбционные методы очистки газов основаны на различной растворимости газов в жидкостях. Абсорбционные процессы можно классифицировать по различным признакам. В зависимости от физико-химической основы их можно разделить на процессы физической абсорбции и химической абсорбции (или хемосорбции, т. е. абсорбции, сопровождающейся химической реакцией газа с хемосорбентом). Это разделение в целом является условным. Процессы абсорбции, сопровождающиеся относительно сильным физическим взаимодействием молекул газа с молекулами абсорбента (например, с образованием водородной связи), близки к процессам абсорбции при слабой химической реакции. [c.25]


    Эти методы основаны на простом разделении катионов и анионов. Естественно, разделяют не катионы и анионы, как таковые, а после обмена их с Н+- или ОН -ионами, вследствие чего не происходит нарушения принципа электронейтральности (однако термин катионно-анионное разделение встречается в литературе). При необходимости полного освобождения раствора от солей его пропускают сначала через катионит, а затем через анионит. При этом происходит обмен катионов с Н+-ионами, а затем обмен анионов с ОН -ионами. Этот метод имеет более важное значение для разделения катионов. При переводе части катионов химической реакцией (комплексообразования, окисления—восстановления, изменения значений pH) в анионы, например в хлор- или гидроксо-комплексы, можно отделить эти ионы от других, не вступающих в эти реакции в данных условиях. Оставшиеся в растворе катионы или образовавшиеся анионы можно затем уловить ионитом. Таким методом можно провести разделение алюминия и титана (трудно разделяемых с применением обычных химических реакций) после обработки анализируемых соединений разбавленной соляной кислотой и проведения ионного обмена на сильнокислотном катионите. Ионы алюминия удерживаются ионитом, из колонки вытекает раствор комплексного соединения титана. [c.380]

    Большинство методов физического титрования основано на плохой смешиваемости титранта с определяемым компонентом титруемой смеси. Первый избыток титранта, вызывающий образование мути или фазовое разделение однородной титруемой смеси, обычно рассматривается как конечная точка титрования. Таким образом, существует некоторая аналогия между конечными точками титрования, которые определяют прямым методом или путем химической реакции, однако основное различие состоит в том, что в первом случае учитывается влияние всех компонентов, содержащихся в титруемой смеси. [c.29]

    Растворимость веществ — важное-свойство для аналитической химии. Так, на различной растворимости одного и того же вещества в двух несмешивающихся растворителях основано экстракционное разделение. Изменение растворимости в результате химических реакций использовано в таком методе разделения, как осаждение, и в гравиметрическом методе количественного анализа. Схемы классификации органических веществ основаны на их растворимости в некоторых растворителях и т. д. Кроме того, это свойство используется в ряде препаративных методов синтеза и очистки препаратов от загрязнений. [c.32]


    Химические методы разделения и идентификации компонентов нефти и газа в значительной степени /тратили свое значение с развитием хроматографии и других физических и физико-химических методов. Одиако в ряде специфических случаев химические методы остаются необходимым дополнением к полной схеме разделения, в особенности для гетероатомных компонентов нефти и непредельных углеводородов. Разделение основано на различной способности компонентов при реакциях гидрирования и дегидрирования, сульфирования, изомеризации, галогенирования и т. д. [c.80]

    Ароматические структурные элементы этих сложных гибридных молекул наиболее резко отличаются от парафиновых и циклопарафиновых звеньев по составу, свойствам и химическим реакциям, поэтому большая часть методов разделения смесей высокомолекулярных углеводородов по типам молекул (избирательное растворение, адсорбционная хроматография и др.) основана на использовании именно этой, химически более активной ароматической части гибридных молекул. Так, гибридные молекулы углеводородов молекулярного веса около 400 ( jb—Сзо) содержащие только одно бензольное кольцо, удается выделить из сложной смеси нри помощи адсорбционной хроматографии, хотя доля атомов углерода, входящих в бензольное кольцо, составляет всего 20—25% от их общего числа в молекуле. [c.116]

    Химические методы разделения смесей веществ основаны на различии в константах равновесия или константах скоростей реакций с участием основного вещества и примесей. Это наиболее древние методы очистки веществ. Например, получение того или иного металла — это не что иное, как процесс отделения атомов этого металла от сопутствующих им атомов других элементов, выделение атомов данного металла из природных смесей, более или менее богатых этим металлом. На химических методах разделения смесей основаны классические методы химического анализа. Эти методы в большинстве своем включают стадию отделения примесей от основного вещества путем перевода их в нерастворимые соединения с последующим отделением осадка или стадию отмывки примесей реактивом, в котором основное вещество не растворяется. [c.11]

    Разделение изотопов физико-химическими методами основано на различии значений нулевой энергии молекул О, содержащих разные изотопы элемента. Нулевая энергия входит в виде существенного слагаемого в термодинамические функции, определяющие многие физико-химические свойства веществ. Изменения в её величине влияют на летучесть, константу равновесия, скорость реакции и т. д. Различие этих свойств используют при разделении изотопов химических элементов, входящих в состав веществ, представляющих собой смесь молекул с различным изотопным замещением. Смеси веществ, используемых для разделения, носят названия рабочих систем. Эти рабочие системы двухфазны (жидкость-пар, газ-твёрдое тело, жидкость-жидкость) и многокомпонентны. Так, например, обычная вода, находящаяся в равновесии со своим паром содержит 18 молекул, различающихся изо- [c.229]

    В современной аналитической химии органические реагенты широко используют как для разделения, так и определения веществ. Методы анализа основаны на различных химических аналитических реакциях в гравиметрических методах анализа используют реакции осаждения малорастворимых соединений комплексов и солей, для фотометрических методов анализа необходимо присутствие в определяемой молекуле хромофорных групп, комплексонометрические методы титрования полностью основаны на реакциях комплексообразования. [c.56]

    Поскольку фундаментальная проблема экспериментальной химии всегда заключалась в получении чистых элементов и их соединений, разделение растворов и гетерогенных систем на составляющие их компоненты является вопросом огромного значения. В то же время, хотя химические реакции и применяются иногда в процессах разделения, несомненно, что наиболее важные процессы основаны на растворимости и летучести смешанных систем и их компонентов. Такие. методы, как перегонка, сублимация и кристаллизация, используются технологами и химиками уже несколько тысячелетий, но лишь совсем недавно, во второй половине XIX века, термодинамика начала [c.162]

    Все методы химического анализа газов основаны на применении жидких, твердых или газообразных реагентов, способных химически связать или изменить тот или иной компонент газовой смеси, в результате чего он удаляется из газовой фазы или превращается в иной газ, поглощаемый другим реагентом. Применяя последовательно несколько различных реагентов, можно удалить ряд компонентов, а по разности объемов газа до и после каждого поглощения количественно определить содержание этих компонентов. Таким путем производится химическое разделение газовой смеси. Характер такого разделения несколько иной, чем у упомянутых выше физических методов. При последовательном поглощении компонентов путем химических реакций каждый из этих компонентов претерпевает химическое изменение. [c.29]


    Разработано много разных физических методов анализа газов. Они основаны на разделении компонентов исследуемого газа при помощи дистилляции или адсорбции и десорбции и последующей идентификации отдельных компонентов при помощи специфических химических реакций или по их физическим свойствам. Другие методы основаны на измерении характерных физических свойств газовой смеси без разделения ее на отдельные составные части химическими или физическими способами. Эти свойства могут быть вполне специфическими для данного [c.735]

    Для технологии солей характерно практически полное отсутствие каталитических процессов, тогда как в рассмотренных производствах серной кислоты, аммиака, азотной кислоты катализаторы служат основным средством интенсификации и осуществления главных стадий этих производств. Сырьем для производства минеральных солей и удобрений служат природные минералы, полупродукты химической промышленности и промышленные отходы. Природное минеральное сырье — основная сырьевая база солевой технологии. При переработке природных фосфатов, баритовых руд, боратов, хромитов, нефелина, природных солей калия, магния и натрия получают фосфорные, калийные и борные удобрения, а также сульфид натрия, бихроматы натрия и калия, сульфат аммония и другие соли. При переработке природного сырья наряду с физическими методами выщелачивания, выпаривания, кристаллизации используют реакции обменного разложения и окисления— восстановления. Одним из методов вскрытия руд (т. е. переведения их ценных компонентов в растворимое или реакционноспособное состояние) служит разложение их кислотами или щелочами или спекание с последними. Этот метод основан на реакциях обменного разложения разделение полученных продуктов производят, пользуясь их различной растворимостью, летучестью одного из компонентов и т. п. Примером может служить обработка природных фосфатов кислотами, при которой нерастворимые-фосфорнокислые соли переходят в водорастворимую форму. Многие методы вскрытия природного сырья основаны на окислительно-восстановительных реакциях к ним принадлежат некоторые виды обжига окислительный, восстановительный, хлорирующий примерами служат производства сульфида натрия и бария восстановительным обжигом сульфата натрия и барита, производство хроматов окислительным обжигом хромитовых руд и т. п. [c.72]

    Химические методы разделения основаны на различной реакционной способности компонентов в реакциях гидрирования, дегидрирования, сульфирования, изомеризации, галогенирова-ния и т. д. Так, реакция каталитического гидрирования имеет аналитическое значение для гетероатомных соединений, которые переводят таким образом в сравнительно легко анализируемые углеводороды. Комбинирование реакции дегидрирования циклоалканов до аренов со скелетной изомеризацией пятичленных циклоалканов, которая протекает с расширением цикла, позволило дать полную характеристику различных типов циклоалканов в нефтяных фракциях. [c.99]

    Сущность метода. Осадочнм хроматофафия основана на использовании химических реакций осажденггя разделяемых компонентов смеси с реагентом-осадителем, входящим в состав НФ. Разделение осуществляется вследствие неодинаковой растворимости образующихся соединений, которые переносятся подвижной фазой с различной скоростью менее [c.280]

    Важнейшие из этйх методов основаны на разделении веществ но размеру частиц или по плотности (фильтрация, осаждение) йли же по способности распределяться между двумя различными фазами (перегонка, экстракция, хроматография). Иногда для разделения смесей используют химические реакции (ионный обмен) или различия в скорости движения в электрическом поле. Наиболее распространенные методы разделения и очистки кратко рассмотрены ниже. [c.26]

    В группе ионообменных методов реакции, идущие на поверхности твердой фазы, происходят с непосредственным участием этой твердой фазы. Наряду с этими методами имеются еще две группы методов разделения, где твердая фаза не участвует в химической реакции. Твердая фаза является здесь, главным образом, носителем, удерживающим разделяемые компоненты в определенных местах. Иногда это удерживание основано на адсорбции вещества на поверхности носителя. В других случаях более важное значение имеет тонкий слой воды (или специальной жидкости), адсорбированный на поверхности носителя этот слой реэкстра-гирует вещество из движущегося слоя органического растворителя или поглощает его из газа и т. п. Разумеется, в таких методах невозможно применение статических приемов разделения (см. выше) возможны лишь динамические методы, когда разделяемая смесь проходит через сорбент, имеющий определенную форму, например, колонки, полоски бумаги или пластинки и т. п. К таким методам относятся бумажная (распределительная) и молекулярно-адсорбционная хроматография. Для обоих методов характерно то, что они применимы для разделения ионных компонентов молекулярных соединений. Молекулярно-адсорбционная хроматография применяется почти исключительно для разделения смесей органических соединений. [c.55]

    Термин Р.х. применяют в осн. в газовой хроматографии. Аналогичные разновидности жидкостной хроматографии обычно называют спец. терминами, напр, реакционное детектирование -совокупность методов превращения анализируемых соед. после их выхода из колонки с целью улучшения характеристик последующего детектирования, химическая дериватизация -методы получения производных анализируемых соед. с целью улучшения характеристик разделения и детектирования. Иногда ионообменную и лигандообменную (с использованием хелатообразующих сорбентов) хроматографию рассматривают как частный случай реакц. жидкостной хроматографии. [c.216]

    Поскольку обработка и интерпретация далных является столь жизненно необходимыми для всех видов химических экспериментов, в главе 2 детально описывается, как выразить точность и правильность аналитических результатов и как оценить погрешности в измерениях с цриложением строгих математических и статистических концепций к тому же этот материал обеспечивает прочные основы для обсуждения хроматографических разделений в более поздних главах. В главе 3 обсуждаются вопросы по Ведения раствор.енных веществ в водной среде и некоторые принципы химического равновесия, на которые опирается материал последующих разделов. Главы 4 и 5 охватывают кислотно-основные реакции в водных и неводных системах такой подход необходим для количественной оценки р астворимости осадков в различных растворителях и различных видов химических взаимодействий, возникающих в аналитических методах, которые основаны на комплексообразовании и экстракции. В главе 6 рассматривается теория и аналитическое применение реакций комплексообразования и основные положения использования этих общих представлений в таких аналитических методах, как прямая потенциометрия, кулонометрическое титрование, полярография и хроматография. Аналитические методы, основанные на образовании осадков, обсуждаются в главах 7 и 8. [c.19]

    Основные научные исследования относятся к химии редких металлов, Разработал теоретические основы и технологию разделения, а также прецизионной очистки циркония и гафния. Установил существование устойчивых многоядерных соединений циркония. Разработал новые методы изучения нестационарной массопередачи в процессах экстракции, обеспечивающие измерение констант скорости поверхностных реакций и определение механизма поверхностных явлений, Развил кинетику химических реакций извлечения и явлений, сопровождающих эти реакции на границе раздела фаз. В соавторстве с сотрудниками издал учебник Технология редких металлов в атомной технике (1974). Основал одну из научных школ по кинетнке экстракционных процессов, [c.602]

    На этом принципе основаны методы разделения некоторых газообразных углеводородов при помощи абсорбции в водном растворе моновалентных солей. Методы, в которых в качестве абсорбирующей среды используются водные растворы медных солей, в корне отличаются от методов абсорбции газообразных углеводородов олеофиль-ны.ми средами, — в первом случае не протекают химические реакции, а только образуются физические смеси отдельных химических компонентов. Комплексы представляют собой однородные вещества, состав и физические свойства которых могут быть определены. На рис. 119 [122] представлены кривые изменения давления диссоциации медных комплексов бутиленов и бутадиена в зависимости от температуры, для сопоставления приведена кривая давления диссоциации бутадиена. [c.301]

    Наиболее селективными неподвижными фазами являются фазы, действие которых основано на реакции комплексообразования разделяемых летучих соединений с нелетучим активным компонентом неподвижной фазы. Комнлексообразование является частным случаем химического взаимодействия (реакции), и поэтому использование комплексообразующих фаз несомненно является одним из примеров эффективного использования химических методов в газовой хромато1Прафии. Селективность фаз этого типа является в ряде случаев столь высокой, что она достаточна для разделения изомеров органических соединений, в том числе ядерных изомеров органических соединений, молекулы которых отличаются, например, содержанием атомов протия, дейтерия, трития [1]. [c.163]

    Процессы разделения углеводородов С4 и С5 методами, осно-еанными на использовании растворов медных солей, осуществляются большей частью в жидкой фазе и, таким образом, тоже могут быть отнесены к процессам экстракции, правда осложняемыми химической реакцией. Последнее обстоятельство, впрочем, сказывается преимущественно на расчете аппаратуры, конструкции которой не отличаются от обычной экстракционной. [c.462]

    Целью качественного неорганического анализа является определение элементов, что практически всегда достижимо с помощью химических реакций. В противоположность этому, в качественном органическом анализе определение элементов служит только для ориентации основной целью является определение отдельных соединений или идентификация характерных функциональных групп органического соединения, для которых обычно известны составляющие их компоненты. Эти задачи, особенно определение функциональных групп, могут лишь частично решаться химическими методами. Это объясняется не только огромным числом существующих органических соединений и разнообразием их строения. Решающее значение имеет тот факт, что химические превращения многих органических соединений протекают в условиях, не осуществимых в аналитической практике. Кроме того, такие реакции реже сопровождаются характерными явлениями, чем реакции неорганических ионов. Следовательно, в реакциях органических соединений специфичность и избирательность—явление более редкое, чем при обнаружении неорганических ионов, а методы разделения, успешно применяющиеся в систематическом качественном неорганическом анализе для группового осаждения, или растворгния, почти совсем не применимы илн мало применимы в качественном органическом анализе. Большинство методов обнаружения органических веществ основано на взаимодействии определенных функциональных групп при химических реакциях, однако многие функциональные группы вообще мало реакционноспособны. Не следует также забывать, что определение функциональных групп дает представление только [c.19]

    В атмолизных опытах, полагаясь на метод разделения смеси газообразных компонентов различной плотности, основанный 1на различии их скоростей диффузии (метод Грэхема), исследователи показали, что атмосферный азот , проходящий через ряд длинных курительных трубок из глины, вел себя как смесь, а не как простое вещество, т. е. они показали, что полученный газ был приблизительно на 2% тяжелее химического азота . Разность веса в лучших опытах достигала 3,5 мг. Рэлей и Рамзай заметили, что более тяжелую составную часть можно получить в чистом состоянии, если бы можно было сделать автоматическую диффузионную установку высокой производительности. Важно, что доказательство возможности разделения было основано исключительно на физическом процессе и не давало поводов подозревать образование в результате химических реакций каких-то производных веществ. [c.27]

    Разделение продуктов коксования. Сначала производят разделение прямого коксового газд. Из него конденсируют смолу и воду, улавливают аммиак, сырой бензол и сероводород. Затем подвергают разделению надсмольную воду, каменноугольную смолу и сырой бензол с получением индивидуальных веществ или их смесей. Разделение продуктов коксования основано на многих типовых приемах и процессах химической технологии массо- и теплопередаче при непосредственном соприкосновении газа с жидкостью, теплопередаче через стенку, конденсации, физической абсорбции и хемосорбции. Используются также избирательная абсорбция, десорбция, дистилляция, многократная ректификация, фракционная кристаллизация, выделение продуктов в результате протекания тех или иных химических реакций. Во всех этих процессах основным фактором улучшения технологического режима и увеличения скорости процесса служит температура. Именно при понижении температуры увеличивается движущая сила процесса при абсорбции [см. ч. 1 гл. II, уравнение (II.71)], а при повышении температуры ускоряются процессы десорбции. Для снижения диффузионного бопротивления на границе фаз и соответственного увеличения коэффициента массопередачи применяют методы усиленного перемешивания фаз увеличением скоростей подачи газа и жидкости. Особенно хорошо сказывается этот прием при противотоке газа и жидкости в башнях с насадкой. Для создания развитой поверхности соприкосновения газа и жидкости при Переработке коксового газа применяют башни с различными видами насадок, барботажные аппараты, а также разбрызгивание жидкости в потоке газа. [c.156]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    Осадки — малорастворимые соединения, образующиеся при реакциях осаладения. Различают аморфные и кристаллические осадки. См. также Осаждение. Осадочные горные породы — породы, образовавшиеся путем осаждения в водной среде минеральных и органических веществ и последующего их уплотнения и изменения. По вещественному составу О. г. п. делятся на карбонатные, кремнистые, сернокислые, галоидные, углистые и др. С О. г. п. связано более 70 % полезных ископаемых (уголь, нефть, торф, алюминиевые и марганцевые руды, фосфориты, калийные солн, значительная часть руд железа, урана и редких металлов). Осаждение — выделение одного или нескольких ионов или веществ в виде малорастворимого соединения. О. применяется для разделения элементов при химическом анализе и в химической технологии. На образовании осадков основано множество методов обнаружения, разделения, гравиметрического и титриметрического определения ионов элементов и веществ. [c.95]

    Случаи отравления спорыньей еще иногда наблюдаются в странах, где рожь широко употребляется в пищу или где зерно, зараженное спорыньей, допускается к использованию в качестве корма для скота. Разработаны методы качественного определения спорыньи , но при разработке методов анализа спорыньи основное внимание уделялось определению содержания активных алкалоидов в исходном материале или в галеновых препаратах спорыньи. Применяемые методы могут быть чисто химическими они обычно основаны на цветных реакциях, например на голубом окрашивании, получающемся при действии диметиламино- бензальдегида на все алкалоиды спорыньи они могут являться комби- ( нацией химических и физических или биологических методов и, наконец, чисто биологическими тест цианоза петушиного гребня, предписанный Фармакопеей США изд. ХП, или тест сокращения изолированной мат-ки кролика . Более старые работы посвящены определению суммы ал- калоидов или определению эрготоксина или эрготамина. С 1935 г. особое внимание уделялось разделению и определению эрготоксина (вместе с эрготинином) и эргометрина (вместе с эргометринином), а также определению эргометрина в присутствии эргометринина ". Существуют биологические методы определения фармакологически активных оснований— эрготоксина, или эрготамина, полученного в алкалоидной фракции  [c.548]

    Разумеется, на пути к максимальной краткости нельзя обойтись без жертв, возможно не всегда оправданных. Некоторые аспекты проблемы хотелось бы видеть более полно и глубоко орвещенными. На наш взгляд, это в первую очередь касается первичных процессов фотосинтеза и в особенности вопроса о реакционных центрах фотосинтеза и механизме их действия. Фотосинтез как специфический фотоэнергетический процесс отличается от других биохимических темновых процессов прежде всего теми первоначальными звеньями, благодаря которым энергия кванта трансформируется в энергию химической связи. Это — поглощение квантов молекулами. пигмента, перенос энергии электронного возбуждения в фотосинтетической единице, разделение зарядов и первичная стабилизация энергии в реакционных центрах. Именно здесь, в этих звеньях, преодолеваются наибольшие и специфические для фотосинтеза трудности, связанные с необходимостью сопряжения столь различных процессов, как поглощение электромагнитного излучения и биохимические реакции. И современные исследования шаг за шагом вскрывают механизм этих процессов, показывая, каким образом природа преодолела эти трудности и, создав уникальную молекулярную организацию фотосинтетических единиц реакционных центров, обеспечила высокую скорость и эффективность запасания энергии света (увы, пока еще не достигнутые в искусственных фотохимических системах ). Неудивительно поэтому, что изучение первичных процессов и в особенности реакционных центров фотосинтеза — одно из наиболее быстро развивающихся направлений, успехи которого основаны на использовании самых современных физических методов исследования (в частности, сверхбыстрой (пикосекундной) лазерной спектроскопии) и па объединении идей целого ряда наук от молекулярной биологии до квантовой механики. Несомненно этим достижениям должно быть уделено большее внимание несмотря на те очевидные трудности, которые возникают при изложении физических аспектов фотосинтеза в кни- [c.6]


Смотреть страницы где упоминается термин Методы разделения, основанные на химических реакциях: [c.119]    [c.94]    [c.202]    [c.2]    [c.94]    [c.555]    [c.10]    [c.16]   
Смотреть главы в:

Химическая переработка ядерного топлива  -> Методы разделения, основанные на химических реакциях




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Разделение химические

Реакции разделения



© 2025 chem21.info Реклама на сайте