Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости ассоциированные температура кипения

    Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. На рис. 68 представлена зависимость температур плавления и кипения в ряду Н2О—НгЗ—НгЗе—НгТе от молекулярной массы соединений. В рассматриваемом ряду с ростом молекулярной массы обе характеристики закономерно увеличиваются. Резкое отличие свойств воды от свойств ее аналогов обусловлено увеличением средней молекулярной массы агрегатов (Н20) за счет ассоциации молекул Н2О вследствие образования водородных связей. Если бы вода не была ассоциированной жидкостью, она имела бы температуру плавления не [c.140]


    Наиболее удобным индикатором водородной связи является температура кипения, так как ее легко измерить. Так, температуры кипения спиртов КОН больше, чем соответствующих меркаптанов Я8Н. Простые эфиры даже с большой молекулярной массой более летучи, чем спирты, так как в отличие от спиртов, в эфирах все атомы водорода связаны с углеродом и неспособны образовывать водородные связи. Если бы вода не была ассоциированной жидкостью, то она имела бы температуру плавления около -100 С и температуру кипения около -80 С. [c.141]

    О наличии водородных связей удобнее всего судить по температурам кипения, так как их легко измерить. Так, если (5ы вода не была ассоциированной жидкостью, ее температура кипения была бы около 180 К. [c.34]

    Еще легче сложные эфиры получаются из спиртов и ангидридов или хлорангидридов кислот. Соответствующие реакции приведены выше. Сложные эфиры низших спиртов и карбоновых кислот (С —С5) представляют собой подвижные (не ассоциированные) жидкости с температурой кипения ниже, чем у соответствующих им кислот. Они малоядовиты, имеют прият- [c.495]

    Мерой энергии межмолекулярного взаимодействия может служить теплота испарения (возгонки) жидкости (кристалла) Л, а точнее разность между теплотой испарения и работой расширения одного моля газа при атмосферном давлении (ЯТ). В табл. 14 приведены значения X—ЯТ при температуре кипения некоторых жидкостей. Теплоты испарения воды и спиртов и других так называемых ассоциированных жидкостей в 5—6 раз выше, чем метана или аргона. Это указывает на то, что в ассоциированных жидкостях между молекулами помимо [c.131]

    Безводная метансульфокислота плавится при 20° и имеет т. кип. 167° при 10 мм [59]. С водой она образует как моно-, так и тригидрат. Судя по температуре кипения, она является ассоциированной жидкостью. При сплавлении с едким кали [60] выделяется водород, а реакционная смесь содержит калиевые соли угольной и сернистой кислот. [c.115]

    Физические свойства. Спирты — ассоциированные жидкости, т. е. молекулы их связаны между собой водородными связями. Это сказывается на температурах кипения, которые довольно высоки (табл. 16.14). Так, температура кипения пропанола 97,4 °С, а бутана, который имеет почти такую же молекулярную массу, но не имеет водородных связей,—0,5 °С. Метиловый, этиловый, пропиловый спирты смешиваются с водой в любых соотношениях. Дальше в ряду спиртов растворимость сильно уменьшается. [c.280]


    Подобно молекулам воды, молекулы низших спиртов связываются между собой водородными связями. Поэтому они представляют собой ассоциированные жидкости и имеют более высокие температуры кипения, чем углеводороды, производными которых они являются, и чем другие органические вещества с таким же составом и молекулярной массой, но не содержащие гидроксильных групп. Фенолы при обычных условиях находятся, как правило, в кристаллическом состоянии. [c.570]

    Большое влияние на свойства жидкостей оказывает полярность их молекул. В результате взаимодействия диполей друг с другом внутри жидкости могут образовываться молекулярные комплексы различной прочности (ассоциаты). Указанное явление получило название ассоциации молекул. Сильно ассоциированными жидкостями являются вода, спирты, жидкий аммиак, уксусная кислота и др. С повышением температуры усиливается движение молекул и молекулярные комплексы могут распадаться на отдельные молекулы. В некоторых случаях ассоциаты настолько прочны, что сохраняются даже в газообразном состоянии. Ассоциация молекул вызывает у жидкостей повышение теплоемкости, температуры кипения, теплоты парообразования и коэффициента преломления. [c.48]

    Физические свойства. Карбоновые кислоты — сильно ассоциированные жидкости за счет водородных связей, имеют высокие температуры кипения (табл. 16.18). [c.291]

    Физические свойства Карбоновые кислоты — сильно ассоциированные жидкости за счет водородных связей, имеют высокие температуры кипения (табл 16 18) Химические свойства В отличие от альдегидов и кето нов, карбонильная группа в карбоксиле неактивна, но повышает кислотность гидроксильной группы, сдвигая на связи О—Н электронную плотность в сторону атома кислорода При этом протон может отщепиться — кисло та диссоциирует [c.291]

    Спирты, так же как и вода,— ассоциированные жидкости, их аномально высокие температуры кипения обусловлены наличием водородных связей. В эфирах и альдегидах также имеется кислород, но они содержат водород, связанный лишь с атомом углерода их атомы водорода недостаточно положительны, чтобы образовать заметную связь с кислородом. Растворимость низших спиртов в воде обусловлена водородными связями, которые могут существовать между молекулой воды и молекулой спирта, так же как между двумя молекулами спирта или между двумя молекулами вода. [c.481]

    Хотя кривые, характеризующие изменение температуры кипения различных веществ от давления, в общем похожи друг на друга, но все же тождественных кривых практически не существует. Они отличаются не только по температуре кипения при одном и том же давлении, но в известной степени и своей формой, которая в значительной мере определяется способностью молекул вещества к ассоциации. У полярных сильно ассоциированных жидкостей, к которым относятся вода, спирты, кислоты и т. п., скорость возрастания давления пара при повышении температуры больше, чем у малополярных жидкостей (табл. 60). [c.212]

    О трех парах ассоциированных и неассоциированных жидкостей. Согласно этим данным, при снижении давления температуры кипения ассоциированных жидкостей уменьшаются не так сильно, как температуры кипения неассоциированных жидкостей. [c.69]

    Способность к ассоциации проявляют аммиак, спирты, пероксид водорода, гидразин, серная кислота и многие другие вещества. Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду аналогов. Так, летучесть ассоциированных жидкостей аномально мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышены. Ассоциация приводит к изменению растворяющей способности. Часто возможность растворения вещества связывают с его способностью образовывать водородные связи. [c.102]

    Так как соотношение (П6.10) справедливо для неассоциированных жидкостей, то и формула (П6.12), строго говоря, может быть использована для оценки критических температур только неассоциированных жидкостей. Для ассоциированной жидкости в соотношении (П6.10) показатель степени п должен быть больше 0,5. Однако даже для сильно ассоциированных жидкостей (см. [80а]) вычисленные значения превышают найденные экспериментально не более чем на 15—18%. Это позволило использовать формулу (П6.12) для оценки значений критических постоянных веш,еств с высокими температурами кипения. В табл. 321 приведены значения критических постоянных для таких соединений. [c.1027]

    В этом случае коэффициент ассоциации равен числу простых молекул, объединившихся в один ассоциированный комплекс. Свойства жидкостей с большим коэффициентом ассоциации заметно отличаются от свойств неассоциированных жидкостей. Например, теплота испарения и температура кипения ассоциированных жидкостей, как правило, больше, чем неассоциированных. [c.37]


    Для неассоциированных жидкостей а=1, для ассоциированных а > 1. При изменении температуры жидкости от 0° С до температуры кипения а находится в интервале 1—1,4. [c.75]

    Удельная теплота испарения, т. е. отнесенная к единице массы жидкости, для углеводородов и их смесей уменьшается- с увеличением молекулярной массы и температуры кипения. При одной и той же молекулярной массе углеводородов наибольшие значения теплоты парообразования имеют ароматические и ацетиленовые углеводороды, наименьшие — алканы и олефины нафтеновые углеводороды занимают промежуточное положение. Углеводороды изомерного строения каждого класса имеют более низкую теплоту испарения, чем углеводороды нормального строения. Высокое значение теилот испарения имеют такие ассоциированные жидкости, как спирты, молекулы которых обладают полярностью. [c.38]

    Физические свойства. Муравьиный альдегид — газ с весьма резким запахом. Другие низшие альдегиды и кетоны — жидкости, легко растворимые в воде альдегиды обладают удушливым запахом, который при сильном разведении становится прият-, ным (напоминает запах плодов). Кетоны пахнут довольно приятно. Температура кипения альдегидов и кетонов возрастает по мере увеличения молекулярной массы. При одном и том же содержании углерода температура кипения у нормальных альдегидов и кетонов выше, чем у соединений изостроения. Например, валериановый альдегид КИПИТ при 103,4°, а изовалериановый — при 92,5°. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например, пропионовый альдегид имеет т. кип. 48,8°, ацетон 56,1°, а -пропиловый спирт 97,8°. Это показывает, что альдегиды и кетоны, в отличие от спиртов, не являются сильно ассоциированными жидкостями. Плотности альдегидов я кетонов ниже единицы. [c.147]

    Аддитивные методы. Шредер [89] предложил новый и простой аддитивный метод для нахождения мольных объемов при нормальной температуре кипения. Согласно его правилу, следует сосчитать число атомов углерода, водорода, кислорода и азота, добавить по единице на каждую двойную связь и сумму умножить на 7. В результате имеем объем, выраженный в кубических сантиметрах на моль (см /моль). Это правило дает удивительно хорошие результаты (ошибки составляют 3—4 %) за исключением сильно ассоциированных жидкостей. В табл. 3,11 при- [c.64]

    Доказательством того, что вода является ассоциированной жидкостью, служит ее исключительно высокая температура плавления и кипения по сравнению с температурой плавления и кипения сероводорода (—83 и —62°С соответственно), несмотря на то, что молекулярный вес воды вдвое меньше молекулярного веса сероводорода. Не подлежит сомнению, что высокие температуры кипения спиртов (температура кипения метилового спирта, например, превышает на 226° температуру кипения метана) обусловливается также ассоциацией их молекул. [c.272]

    Теплоты плавления, испарения и температуры кипения. На разрушение водородных связей при плавлении и испарении требуется энергия порядка 40 кДж/моль, в то время как на разрушение ван-дер-ваальсоБых связей —энергия около 1—5 кДж/моль. Поэтому жидкости, в которых имеются водородные связи между молекулами (ассоциированные жидкости), обладают сравнительно высокими теп-лотами испарения и плавления (см. табл. 14). По той же причине температуры кипения у ассоциированных жидкостей выше, чем у неассоциированных. Сравним, например, два изомера этанол СзН ОН (Т = 351 К), А,Я = 42,63 кДж/моль и диметиловый эфир СНзОСНз (Т, = 249 К), А,Я = 18,6 кДж/моль.  [c.139]

    Температура кипения спиртов выше, чем галогеналкилов и углеводородов с тем же числом углеродных атомов. Это свойство, характерное для всех гидроксилсодержащих веществ, объясняется тем, что молекулы спирта, как и воды, являются ассоциированными жидкостями (их молекулы соединены друг с другом) за счет возникновения между молекулами водородных связей  [c.106]

    Установлено, что для большого числа жидкостей, молекулы которых не образуют ассоциатов ни в жидкой, ни в паровой фазе, справедливо эмпирическое правило Трутона энтропия испарения жидкости при нормальной температуре кипения составляет 21—22 э. е. Для веществ, ассоциированных в жидкой фазе, Д 5 > Д5трутона (например, для воды Дг,5=26 э. е.). Ес ЛИ же вещество образует ассоциаты в паре, то для него Дг)5< <А5трутона- Примером может служить уксусная кислота (До5 15 э. е.). Тем не менее правило Трутона может быть полезным для оценки теплоты испарения по известной температуре кипения. [c.69]

    Наиболее удобным индикатором водородной связи является температура кипения, так как ее легко измерить. Определив температуру кипения для какого-либо спирта ROH и соответствующего ему меркаптана RSH, мы бы убедились, что для ROH она больше, чем для RSH. Простые эфиры даже с большим молекулярным вe oм чем спирты, более летучи. Если бы вода не была ассоциированной жидкостью, то она имела бы температуру плавления около —100°С и температуру [c.233]

    Фтористый водород выше 19,5 °С представляет собой бесцветный газ с резким раздражаюш им дыхательные пути действием, а ниже указанной температуры кипения — легкоподвижную бесцветную жидкость. Благодаря особенностям химического строения молекула НР характеризуется высоким значением электрического момента диполя (0,64-Кл-м), превосходящим электрический момент диполя воды, сернистого газа и аммиака. Жидкий фторид водорода имеет большую величину диэлектрической постоянной, равную 83,6 при О °С, НР ассоциирован за счет водородных связей в (НР) , где п изменяется от 1 до 4 в парах, а в жидком фтористом водороде л>4. [c.353]

    Физические свойства. Низшие члены ряда алканкарбоновых кислот, так называемых жирных кислот, представляют из себя сильно ассоциированные жидкости с высокой температурой кипения (у НСООН = 101 С, у [c.482]

    Пиридазин является слабым однокислотным основанием с довольно высокой температурой кипения. Сам пиридазин представляет собой бесцветную жидкость со слабым запахом, напоминающим запах пиридина, т. пл.—6,4° т. кип. 207,4° в атмосфере азота при давлении 762,5 мм по 1,5231 1,1054 [16]. На основании криоскопических определений пиридазин, по-видимому, только немного ассоциирован в бензоле или диоксане его высокая температура кипения объясняется большим дипольным моментом (около 4D) [17, 100], как это наблюдается и в случае нитробензола. Рассчитанное значение диполь- ного момента [101, 102] согласуется с экспериментальными данными. Величина поверхностного натяжения пиридазина (46,9 дн1см при 34°) также близка к соответствующей величине для нитробензола, однако пиридазин имеет низкую константу Этваша, которая заметно меняется с температурой. Была измерена также вязкость пиридазина [17]. Абсорбционный спектр этого соединения имеет две сильных полосы, Х акс. 245—250 и 338 мц, в гексане в воде вторая из этих полос смещается до 300 мц водный раствор хлористого водорода обнаруживает очень сходную кривую [64, 103]. Квантовомеханические расчеты предсказывают появление полосы при 336 мц [104]. Исследован также спектр паров пиридазина [105]. Пиридазин смешивается во всех отношениях с водой, бензолом, диоксаном и спиртом несколько менее растворим в эфире и почти совсем нерастворим в циклогексане [17]. Он представляет собой очень слабое основание, у которого рКа равно только 2,33 (у пиридина p7< 5,23) [106]. Однако пиридазин является более сильным основанием, чем пиримидин (1,30) или пиразин (0,6). [c.93]

    В случае ассоциации, а именно для спиртов, и эти правила с ограниченной аддитивностью перестают быть действительными. 3 1ачения, приходящиеся на группу Hg, в гомологических рядах уже непостоянны. Молекулярные значения нельзя вычислить из атомных констант, так как внутреннее трение жидкостей есть функция от молекулярного веса или молекулярного объема. Поэтому, согласно Велишу (Е. W6hlis h, 1911), изомер с более высокой температурой кипения имеет почти всегда большее внутреннее трение, так как его молекула занимает больше места, а величина свободного пространства меньше таким образом, у этого вещества междумолекулярный объем меньше (ср. стр. 26). В гомологических рядах ассоциированных веществ (спирты, кислоты) для первых членов наблюдаются отклонения от линейной зависимости, указанной в сноске 1. [c.200]


Смотреть страницы где упоминается термин Жидкости ассоциированные температура кипения: [c.133]    [c.236]    [c.103]    [c.273]    [c.154]   
Перегонка (1954) -- [ c.383 , c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкость ассоциированные

Кипение жидкости

Температура кипения жидкосте



© 2025 chem21.info Реклама на сайте