Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пузырь высота

    Изменения к в зависимости от времени для отдельных пузырей приведены на рис. 13. Обраш,ают на себя внимание малые отклонения наклона приведенных кривых, что говорит о примерном постоянстве средней скорости подъема пузырей по высоте слоя. На выходе из слоя пузыри имеют максимальный размер, число их минимально. Число зародившихся и вы--ходящих с поверхности пузырей, высота их зарождения над газораспределительной решеткой, размер по мере прохождения по слою и скорость движения зависят от скорости газа, высоты слоя и размера частиц. Отмечается [11—13], что d и ц п для отдельных пузырей имеют разброс значений, но распределение их чаще всего близко к нормальному. [c.25]


    При нормальной работе стояка без подвисания твердого материала и проскока газовых пузырей высота сплошного, опускающегося вниз слоя материала незначительно отличается от глубины погружения стояка в слой. [c.89]

    При истечении струи из отверстия происходит подсос воздуха из основного объема слоя. Подобное явление было установлено косвенно в работе [14] при изучении расширения слоя в случае искусственного введения в слой пузырей. Было установлено, что после прорыва пузыря высота псевдоожиженного слоя становится меньше первоначальной. [c.42]

    В соответствии с ГОСТ 585—41 допускается наличие на поверхности керамиковых труб небольших посечек шириной до 0,5 мм и длиной не более 6 мм (I сорт) и 10 мм (П сорт), а также небольших пузырей высотой не более 5 мм в количестве не более 5 шт. (I сорт) и 10 шт. (П сорт). [c.96]

    Расстояние центра пузыря над газораспределительной решеткой А в разные промежутки времени определяется скоростью движения пузырей ги . Изменение к в зависимости от времени для отдельных пузырей приведено на рис. 1.11. Обращают на себя внимание малые изменения наклона приведенных кривых, что говорит о примерном постоянстве средней скорости подъема пузырей по высоте слоя. На выходе из слоя пузыри имеют максимальный размер, число их минимально. Число зародившихся и выходящих с поверхности пузырей, высота их зарождения над газораспределительной решеткой, размер по мере прохождения по слою и скорость движения зависят от скорости газа, высоты слоя и размера частиц. Отмечается [35, 129, 280], что и для отдельных пузырей имеют разброс значений, но распределение их чаще всего близко к нормальному. [c.20]

    Математическая модель. Уравнения этой модели при условии изотермичности процесса находят из уравнений материального баланса для потока газа. Для составления их выделим в реакторе, имеющем высоту насыпного и рабочего слоев катализатора VI Ь ш площадь сечения Р, элемент объема длиной 1 (рис. 42). В соответствии с двухфазной моделью представим этот элемент в виде двух составляющих — одной для плотной фазы (индекс 1 ) — другой для фазы пузырей (индекс 2 ), Введем следующие обозначения  [c.121]

    Поршневой режим наблюдается, если пузырьки газа достигают таких размеров, что они могут занять все поперечное сечение узкого сосуда. В этом случае в сосуде поднимаются чередующиеся пузыри газа и пробки из твердых частиц. В больших сосудах комки частиц поднимаются, а затем опускаются, когда под ними лопаются газовые пузыри. Этот процесс подобен ударам при выбросах в кипящих жидкостях. Потеря напора при таком режиме неустойчива и обычно значительно больше, чем при спокойных условиях. Данный режим возникает, когда частицы слишком крупны или слой не содержит достаточного количества более тонкого материала. Поршневой режим чаще возникает при большом значении соотношения высоты к диаметру, но смягчается при снижении скорости газа. [c.255]


    Прохождение газа через кипящий слой не является равномерным. Часть газа проходит в виде больших пузырей. Использование результатов экспериментов, проведенных в неподвижном слое, для псевдоожиженного слоя связано с затруднениями, но возможно, если высота слоя относительно велика, диаметр мал, а поток равномерен. При небольших высотах слоя возникает циркуляция в центре слоя твердые частицы движутся вверх, а около стенок — вниз. Для слоя, диаметр которого достаточно велик, перемешивание может быть значительным. При течении, близком к равномерному, для вычисления числа Пекле можно пользоваться зависимостью вида >2  [c.47]

    Переход от ламинарного режима к турбулентному оправдан только в том случае, когда скорость реакции определяется массообменом. Время пребывания газа в реакторе зависит от скорости подъема пузырей. Его можно продлить, увеличивая высоту подъема, но в таком случае меняется продольная диффузия и распределение времени пребывания. [c.360]

    Пример. Определить поверхность контакта фаз при выходе пузырей из одиночного отверстия по следующим данным диаметр отверстия м, высота столба жидкости в аппарате [c.17]

    При последующем возрастании скорости газа (за пределы точки В) число твердых частиц между точками измерения давлений РР уменьшается. Соответственно по кривой ВО понижается перепад давлений на единицу высоты слоя, хотя полный перепад давлений (по всей высоте слоя) остается неизменным. В этих условиях избыток газа, сверх необходимого для начала псевдоожижения, движется через зернистый слой в виде газовых пузырей . Число и средний размер последних возрастают по мере приближения к точке 0 в результате создаются благоприятные условия для слияния восходящих пузырей. [c.19]

    Изучали расширение слоя и определяли скорость в момент возникновения пузырей при псевдоожижении различных твердых частиц воздухом под давлением 1 -10 — 1,4-10 Па (от 1 до 14 ат) в трубе диаметром 101,6 мм, снабженной пористым бронзовым газораспределительным устройством (средний размер пор 2 мкм, максимальный — 10 мк>1). Особое внимание было уделено определению скорости воздуха в момент возникновения пузырей, для чего скорость воздуха увеличивали очень плавно до появления первого пузыря. Как только он достигал свободной поверхности слоя, наблюдалось резкое уменьшение высоты последнего и устанавливался непрерывный барботаж пузырей. [c.54]

    Фотоснимки двухмерных пузырей, поднимающихся в слоях малой высоты, показывают, что поле безвихревого потока вокруг сферы является весьма удовлетворительной аппроксимацией реального движения твердых частиц. Наблюдаемые на практике пузыри имеют форму, близкую к сферической в верхней своей части и вогнутую — в нижней, причем вогнутость является частью замкнутой кильватерной зоны (гидродинамического следа) за движущимся пузырем. [c.99]

    Пусть псевдоожиженный слой находится в прямоугольном аппарате с прозрачными стенками если толщина слоя мала по сравнению с шириной, то его можно рассматривать как двухмерный слой. Ширина и высота слоя в данном случае не играют роли толщина же должна быть в пределах 1—2 см. В таком аппарате слой представляет собой как бы продольный разрез любого трехмерного псевдоожиженного слоя, который необходимо моделировать. Были изучены типичные слои такой формы высотой 50 см, шириной 70 см и толщиной 1 см, а также высотой 3 м и шириной 60 см (фото 1У-3). Пузыри, образующиеся [c.126]

    Средний размер пузырей быстро увеличивается по высоте слоя, главным образом в результате их коалесценции, а также за счет расширения газа вследствие уменьшения давления с высотой. Однако последний эффект невелик, за исключением зернистых материалов с очень высокой плотностью или систем с очень низким абсолютным давлением над слоем. Если иметь в виду эффект расширения, то объемный расход дискретной фазы остается постоянным по высоте слоя, кроме некоторых отдельных случаев, которые в данной главе не рассматриваются (см. главу II). [c.137]

    Скорость коалесценции пузырей может быть весьма значительной и, очевидно, зависит от их концентрации в слое последняя, в свою очередь, изменяется в зависимости от расхода газа. Средний размер пузыря может удваиваться на высоте в несколько сантиметров так что, за исключением очень крупных аппаратов, пузыри достигают диаметра слоя на сравнительно малой высоте. Ограничивающие стенки аппарата начинают влиять на форму и размер пузыря, как только последний достигнет половины диаметра слоя с этого момента псевдоожижение происходит в условиях поршневого режима (см. главу V). В этом заключается основная трудность экспериментального определения максимального размера пузыря. [c.137]


    Другая методика, весьма трудоемкая, но дающая наиболее подробную картину, — это сечение слоя вертикальной плоскостью. На фото IV-17 демонстрируется диаметральное сечение цилиндрического двухцветного слоя после прохождения одиночного пузыря (согласно рентгенограмме, при диаметре слоя 14 см и высоте 22 см радиус пузыря составлял 2,5 см). [c.151]

    На рис. У-15 показаны предполагаемые типы потока при возникновении поршневого режима. Принимается, что на значительном расстоянии от распределительного устройства в результате коалесценции образуются пузыри объемом лВ /8. Из уравнения (У,16) следует, что высота таких пузырей примерно равна В, я, в соответствии с изложенным в предыдущем разделе, их можно считать наименьшими различимыми пробками. Заметим, что стенки аппарата начинают влиять на движение пузыря, когда размер его несколько меньше, чем при явно выраженном поршневом режиме. [c.192]

    Не ясно, почему возникновение поршней не зависит от отношения Н 1 — высота слоя в начале псевдоожижения). Возможно, это объясняется тем, что в псевдоожиженном слое крупных частиц коалесценция пузырей происходит непосредственно над распределительной решеткой, на высоте, равной нескольким диаметрам пузыря, т. е. внутри слоя, высота которого сопоставима с его [c.194]

    Авторы не затрагивают перемешивания твердых частиц, хотя оно может играть существенную роль, особенно в случае теплонапряженных химических реакций. Поскольку происходит коалесценция пузырей, межфазный коэффициент обмена теоретически рассчитывают (см. гл. V) последовательно для каждого участка в слое, внутри которого высота газовой пробки постоянна. Одновременно сделано важное допущение в месте коалесценции газовых пробок потоки газа в дискретной и непрерывной фазах полностью смешиваются. Таким образом, весь реактор рассматривается как бы составленным из нескольких последовательно соединенных реакторов (рис. VII-17). В результате такого допущения режим в значительной мере приближается к стержневому (идеальное вытеснение) и конверсия в реакторе повышается. Однако остается неясным, каким образом происходит смешение газа из разных фаз при коалесценции двух газовых пробок. [c.275]

    Барботажные абсорберы. В барботажных абсорберах газ выходит из большого числа отверстий и барботирует через слой жидкости либо в виде отдельных пузырьков (при малых скоростях газа), либо в виде струй (при повышенных скоростях газа), пере-ХОДЯЩ.ИХ все же в поток пузырьков на некотором расстоянии от точки истечения газа. В результате образуется газожидкостная (гетерогенная) система, нижняя часть которой состоит из слоя жидкости с распределенными в ней газовыми пузырьками, средняя — из слоя ячеистой пены, а верхняя — из зоны брызг, возни-каюш,их при разрыве оболочек уходяш,их газовых пузырей. Высоты ЭТИХ слоев изменяются со скоростью газа с ее возрастанием уменьшается нижний слой и увеличивается средний (в пределах, зависяш,их от физических свойств жидкости). [c.490]

    В пределе пх диаметр может достигнуть диаметра аппарата. Последнее явление обычно наблюдается в аппаратах небольшого диаметра при большом соотношении высоты и диаметра слоя. Газовый пузырь увеличивается в размере до тех пор, пока образовавшийся над ним уплотненный слой твердого материала не обрушится внутрь пузыря. Это явление пазываетсгс поршневым проскоком (рис. 46). Оно крайне нежелательно, так как ухудшает контакт между газом и зернистым материалом. [c.71]

    Для несферических частиц величина коэффициента присоединенной массы может эначительно отличаться от 0,5. Расчеты, проведенные в работе [48], показывают, что для эллипсоидального пузыря с отношением малой и большой полуосей эллипса х =0,4 значение коэффициента присоединенной массы в три раза превышает значение этого коэффициента для сферической частицы, а при х = 0.1 - в двенадцать раз. Таким образом, общепринятая идеализация формы газовых пузырьков сферами при нестационарном движении может приводить к значительным погрешностям. Эксперименты, проведенные в работе [49], в которых с помощью лазерного доплеровского анемометра проводились измерения скорости пузырей на начальном участке их движения, показывают, что зависимость скорости движения пузыря от высоты подъема резко отличается от такой же зависимости для сферической твердой частицы. На первом участке, составляющем примерно lOi/g. скорость пузыря резко возрастает, достигая значения, в полтора раза превышающего значение установившейся скорости. На втором участке скорость начинает падать, приближаясь к установившемуся значению. В зависимости от диаметра пузыря протяженность второго участка составляет 50 — 1(Ю диаметров. По-видимому, некоторое время после отрыва пузырь имеет еще сферическую форму. [c.31]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    НИИ она падает. Объемная концентрация частиц в первом режиме сравнительно невелика, а скорость частиц достаточно высока. Наблюдается интенсивное мелкомасштабное пульсационное движение частиц и значительное перемешивание как сплошной, так и дисперсной фазы по высоте аппарата. Движение частиц во втором режиме носит замедленный и достаточно регулярный характер . Объемная концентрация частиц Bbmie, чем в первом режиме, и при не слишком больших расходах сплошной фазы близка к концентрации плотной упаковки. Продольное перемешивание значительно снижено по сравнению с первым режимом. Частицы соприкасаются друг с другом. Капли и пузыри в этом режиме заметно деформированы. За эти особенности второй режим движения капель и пузырей получил название режима плотной упаковки [156] или плотного слоя [133]. Из-за высокой объемной кош1ентрации частиц, а следовательно, и значительной межфазной поверхности, а также низких значений коэффициентов продольного перемешивания режим движения частиц во взвешенном состоянии имеет преимущества по сравнению с режимом обычного осаждения при проведении процессов тепло- и массообмена. [c.95]

    Существовавшие теории, относящиеся в основном к псевдоожиженным слоям, не могли дать удовлетворительного объяснения наблюдаемым явлениям. Резуттьтаты, полученные Андерсоном и Джексоном [181], которые провели расчеты скоростей роста возмущений порозности в различных псевдоожиженных слоях, показывали, что в системах газ — твердое тело возмущения растут значительно быстрее, чем в системах жидкость - твердое тело. Однако объяснить, почему в слоях, ожижаемых жидкостью, пузыри не возникают даже при очень большой высоте слоя, они не могли [189]. Вместе с тем, в ряде работ [152, 185, 186, 191] было 134 [c.134]

    При дальнейшем возрастании скорости газового потока за переделы точки В нарушается непрерывное движение порпщей твердых частиц вслед за газовыми пузырями твердый материал начинает выноситься вверх из слоя, пока небольшое оставшееся его количество не образует газовзвёси, равномерно раснределен-ной по высоте аппарата. Это состояние соответствует точке Н на [c.19]

    Наблюдения показали что при движении отделившегося от решетки пузыря твердые частицы образуют вокруг него концентричную оболочку толщиной примерно в /4 диаметра пузыря ОдЮв = 1>5). Будем рассматривать эту кольцевую оболочку как область, через которую твердые частицы вокруг пузыря движутся вниз под действием гидростатического напора, равного высоте полости (полость и кольцевое пространство уподоблены двум коленам дифференциального манометра), как это изображено [c.30]

    Дро — перепад давления в псевдоожиженном слое высотой Н г — радиальная координата с началом в центре пузыря гь — радиус сферической или цилиндрической полости радиус кривизны верхней сферической поверхности пузыря Гс — радиус облака вокруг пузыря Real — действительная часть функции Rik — тензор, описывающий напряжение Рейнольдса для текучей среды (ожижающего агента) [c.118]

    Если стенки аппарата прозрачны, то около них люжно наблюдать пузыри по высоте слоя и определять их форму и скорость движения. Однако в большинстве случаев пузыри редко появляются у стенки аппарата, а свойства тех, что проходят вблизи нее, могут оказаться нетипичными. Подъема пузырей у стенок можно достигнуть, несколько наклоняя аппарат, либо специально генерируя пузыри дополнительным потоком газа, либо используя специальные газораспределительные устройства. На фото 1У-2 представлен снимок пузыря в полуцилиндрическом слое около плоской прозрачной стенки. Дополнительный поток воздуха вводили в основание слоя непосредственно у прозрачной стенки и дабы образовавшиеся пузыри двигались вдоль гтенки, аппарат слегка наклоняли. [c.123]

    Причина возникновения кильватерной зоны за плохо обтекаемым телом при числах Рейнольдса, бс тьших, чем в случае стоксовых или пластических режимов течения, состоит в том, что инерция жидкости препятствует достаточно быстрому изменению направления ее движения и ее лппии тока не могут полностью сомкнуться сразу же за обтекаемым телом. При обтекании пузыря по мере того, как струя жидкости смыкается под ним, боковые компоненты скорости исчезают, и в результате возникает избыточное давление (как и под твердым телом), под действием которого жидкость попадает в основание пузыря, удерживаясь там. Грубо говоря, высота жидкостной кильватерной зоны является мерой избыточного давления в гипотетичной нижней критической точке пузыря. [c.152]

    На фото IV-21 показана несколько иная схема того же процесса перемещения. Меченые частицы размещали толстой прослойкой на половине высоты слоя и наблюдали в рентгеновских лучах последовательное прохождение пузырей. Эта методика позволяет наблюдать исследуемый процесс не столь детально, как предыдущие, однако понижение слоя вдоль оси аппарата и накопление отложений на его свободной поверхности видно достаточно ясно. Интересно сравнить последний рентгеноснимок на фото IV-21 с вертикальным разрезом того же слоя (непрозрачные дЛя рентгеновских лучей частицы были одновременно окрашены в другой цвет), приведенным на фото IV-22 на последнем видно гораздо больше деталей. [c.155]

    Длину газовой пробки можно вычислить, если принять, что ее объем определяется уравнением (У,16) и что два последовательно двигающихся пузыря не сливаются, если верт икальное расстояние между ними больше 2 0 ж постоянно по всей высоте псевдоожиженного слоя. Так как расширение последнего от высоты Hmf до Н происходит только за счет поршней, то [c.197]

    Будем понимать под скоростью обмена твердыми частицами Кв объем частиц в непрерывной фазе, обмениваемый за единицу времени в единице объема слоя между двумя потоками твердых частиц — поднимающимися (с пузырями в их кильваторе) и опускат ющимйся (в остальном слое). В целях упрощения будем считать скорость Кд постоянной ПО высоте слоя. [c.268]


Смотреть страницы где упоминается термин Пузырь высота: [c.69]    [c.294]    [c.75]    [c.177]    [c.297]    [c.34]    [c.54]    [c.94]    [c.138]    [c.167]    [c.172]    [c.194]    [c.204]    [c.257]    [c.270]   
Псевдоожижение твёрдых частиц (1965) -- [ c.40 , c.130 , c.134 , c.135 , c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Высота



© 2025 chem21.info Реклама на сайте