Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент катионита

    Важным дополнением к этим теориям являются работы Дерягина и Духина, опубликованные в 1959 г. Эти авторы учли сопутствующий электрокинетическим явлениям эффект диффузии ионов. Он оказался особенно существенным для жидких поверхностей, например для эффекта Дорна при обратной седиментации (всплывании) пузырьков газа. При движении твердой сферической частицы в растворе электролита также возникают разность концентраций между ее полюсами по направлению движения и соответствующий диффузионный потенциал. Поправка, связанная с этим потенциалом, может оказаться того же порядка, что и сам потенциал перемещения частицы. Формулы, которые получаются при уточнении теории с учетом диффузии, а также закона сохранения анионов и катионов в отдельности, приобретают классическую форму только при равенстве коэффициентов диффузии анионов и катионов. Если учесть диффузию, то, исходя из требования симметрии кинетических коэффициентов в теории Онзагера, можно прийти к выводу, что наличие разности концентраций по обе стороны капилляра или пористой перегородки обязательно должно вызывать течение в растворе (капиллярный осмос), а частицы, находящиеся во взвешенном состоянии в растворе, в котором существует градиент концентрации, должны двигаться (диффузиофорез). Краткость изложения не позволяет нам приводить здесь конкретные выводы и формулы. [c.143]


    Во всех химических процессах, протекающих в элементах, принимают участие ионы обоих знаков, поэтому по измерениям э. д. с. невозможно определить активность ионов одного знака а+ или а в результате получают среднюю ионную активность а (при известных условиях). Только для химического процесса в элементе в целом можно выяснить все изменения, которые испытали растворенные соли, т. е. одновременно катионы и анионы, и сопоставить измеренные величины Е с изменениями химических потенциалов (1, , активностей а и моляльностей т растворенных солей. Несколько позднее мы рассмотрим некоторые примеры, пока же будем считать, что для простых электролитов (растворена одна соль) коэффициент активности катиона условно равен среднему коэффициенту активности соли. [c.546]

    Обычно тип структуры синтетического цеолита обозначают буквами латинского алфавита А, X, V, О, К, 5, Т, Ь и т. д. Перед буквой ставят символ катиона, компенсирующего отрицательный заряд алюминия в алюмосиликате. Например, СаХ означает цеолит типа X в кальциевой форме. Принято относить цеолиты к различным структурным типам в зависимости от величины коэффициента п — соотношения содержания в цеолите кремнезема к глинозему. Значения п для цеолитов разных типов следующие  [c.15]

    Определение средних ионных коэффициентов активности растворов электролитов. Для этого необходимо измерить э. д. с. электрохимической цепи с одним электролитом (отсутствует диффузионный потенциал), электроды которой обратимы относительно катиона и аниона исследуемого электролита. Так, при определении среднего ионного коэффициента активности соляной кислоты составляется цепь [c.495]

    Гальванический элемент состоит из двух электродов, опущенных в раствор и обратимых как к катиону, так и к аниону. Для определения коэффициента активности соляной кислоты применяется элемент, составленный из водородного и хлорсеребряного электродов  [c.309]

    В результате анионные ВМС очень сильно уменьшают диффузионную подвижность влаги и миграцию ионов в торфяных системах (рис. 4.14) [230]. Действие катионных ВМС при малых концентрациях аналогично действию КПАВ. По мере увеличения содержания катионных ВМС в торфяных системах коэффициент диффузии воды и, следовательно, интенсивность миграции ионов увеличиваются, проходят через максимум, соответствующий изоэлектрическому состоянию материала (минимуму содержания в нем связанной воды), а затем снижаются [c.80]


    Те же исследователи нашли, что отношение концентраций двухвалентных катионов Са, Mg, Мп и Zn в водной фазе к их равновесной концентрации в силикатной фазе не является линейным ло отношению к содержанию их хлоридов в водной фазе. Для каждого из этих катионов коэффициент распределения увеличивается быстрее, чем в первой степени от. На рис. 51 приведена эта зависимость для коэффициента распределения Zn. [c.89]

    Для других концентраций раствора pH будет изменяться по формуле pH = Л — 1/п Ig с, где А — значение pH для 1 н. концентрации катиона с — концентрация катиона п — стехиометрический коэффициент перед И .  [c.415]

    Потенциометрическое изучение равновесия раствор - осадок основано на применении электродов первого, второго, третьего рода и ионоселективных мембранных электродов. Для исключения из расчетных уравнений величины или Е° измеряют два значения э.д.с, соответствующего гальванического элемента при избытке в изучаемой системе 1) аниона и 2) катиона, образующих малорастворимый электролит. При использовании метода титрования выбирают для расчета моменты соответственно до и после достижения т.э. Учет коэффициентов активности осуществляется обычно экстраполяцией С или и. к нулевым значениям. [c.123]

    Скорости катионов if и анионов LT при 18 °С, см сек дан. (Коэффициент а для пересчета на другие температуры) [c.49]

    Примечания. I. Для пересчета скорости катионов и анионов в системе СИ следует данные таблицы умножить на коэффициент 103. [c.49]

    Средний коэффициент активности электролита у представляет собой среднее геометрическое из коэффициентов активности катиона и аниона, а средняя концентрация ионов электролита т — среднее геометрическое из концентраций катиона и аниона. Подставляя значения т+ и т из уравнения (VII, 10) в (VII, 13), получим [c.246]

    Для многозарядных ионов дополнительные трудности возникают из-за того, что специфическое взаимодействие ионов, предложенное Бренстедом, оказывает гораздо более сильное влияние на скорость реакции, чем изменение коэффициентов активности. Поэтому корреляция между ]g k/k° и концентрацией многозарядного иона, противоположного по знаку иону, участвующему в реакции, соблюдается лучше, чем между ]g(A /A o) иионной силой раствора. Это было проиллюстрировано на примере зависимости константы скорости реакции Hg -l-GO(NHз)5Br (см. рис. XV.5) от концентрации (С1О4) одновременно замечено, что константа не зависит от концентрации катиона [45]. Те же авторы показали, что в реакции ВгСНаСО + ЗгОз - - (ЗгОзСНгСОг) Н- Вг" константа скорости зависит от (К ), а не от концентрации отрицательного иона (в качестве отрицательных ионов использовались N03, 30 и o( N)5". В большинстве опытов ионная сила раствора менялась в интервале от 0,001 до 0,04 М). В обоих случаях при постоянной концентрации иона противоположного заряда, но более чем двукратном изменении ионной силы раствора константа скорости реакции изменялась менее чем на 2%. Это совершенно очевидно противоречит уравнению Бренстеда. [c.450]

    На подвижность катионов существенное влияние оказывают анионное окружение и температура расплава. Электропроводность жидких шлаков с повышением температуры увеличивается. Шлаки относятся к проводникам второго рода, в которых переносчиками тока являются ионы. Шлаки имеют положительный температурный коэффициент проводимости и подчиняются законам Фарадея. [c.83]

    Определение (50.11) является частным случаем (50.9). Поэтому средние коэффициенты активности определены термодинамически однозначно. Уравнение (50.11) приводит к примечательному следствию, что в растворе нескольких электролитов, которые имеют общими определенные виды ионов, средние коэффициенты активности электролитов зависят друг от друга. Если, например, имеются в растворе два одновалентных катиона к и В , а также два одновалентных аниона С и О", то для средних коэффициентов активности из уравнения (50.11) получаем [c.248]

    С целью получения наилучшего адсорбента для выделения ге-ксилола исследовали следующие катионные формы цеолитов X и У группы I А — Ы, Na, К, КЬ, Сз группы II А — Ве, Mg, Са, Зг, Ва, а также Ag, Мп, N1, Сс1, Си, 2п, Ьа [89—93]. Значения коэффициентов разделения, полученных на некоторых цеолитах, в паровой, фазе при температуре около 180 °С приведены ниже  [c.123]

    III. 132) выражает коэффициент разделения. Селективность зависит от многих причин. Упругая сетка матрицы сопротивляется набуханию, поэтому ионит предпочтительнее поглощает менее гидратированные ноны. Этот факт объясняет установленные для многих катионитов лиотропные ряды повышения сорбируемости. Например, однозарядные катионы образуют следующий лиотропный ряд Li+ < Na+ <С К+ < Rb+ <С s+. Повыц]ение жесткости матрицы, что достигается увеличением содержания мостикообразователя, приводит к росту селективности ионита по отиощению к нонам меньших размеров в гидратированном состоянии. [c.171]

    Как уже отмечалось, подвижности катионов и анионов обычно неодинаковы и+Фи- II Х+ФЛ-), а следовательно, не равны и их коэффициенты диффузии (В фВ ). Поэтому ири одном и том же. градиенте коцентрации скорость диффузии положительных и отрицательных ионов различна. Если предположить, например, что создана граница между двумя растворами соляной кислоты, концентрации которых равны соответственно с и с—de, то в сторону разбавленного раствора иродиффундирует за некоторый отрезок времени больше ионов водорода, чем хлора, поскольку Я ] - > -В результате этого возникнет разность потенциалов между концентрированным и разбавленным растворами, причем последний ока- [c.142]


    Одиночные электролиты. Полностью ионизированный электролит в растворе (например, Na l в воде) состоит из положительно и отрицательно заряженных ионов. При наличии единственного электролита в растворе содержится по одному виду положительных и отрицательных ионов, причем во избежание возникновения очень сильных электрических полей концентрации обоих видов ионов должны быть практически равны во всех точках. Поэтому при диффузии электролита скорость диффузии катионов и анионов должна быть одинакова. Однако собственные коэффициенты диффузии каждого из них могут отличаться (например, в растворе НС1 ион обладает гораздо более высоким собственным коэффициентом диффузии, чем ион С1"). В результате тенденции к более быстрой диффузии одного из ионов возникает небольшое разделение зарядов, приводящее к градиенту потенциала, который замедляет ионы и ускоряет ионы 1 по сравнению со скоростями, с которыми они должны были бы диффундировать. При расчете действительного эффекта необходимо знать собственный коэффициент диффузии каждого иона, а также его подвижность, т. е. скорость миграции при градиенте потенциала единичной силы. Обе эти величины в действительности пропорциональны одна другой, т. е. [c.26]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    Приведенные выше экспериментальные данные по коэффициентам распределения ряда катионов между силикатным расплавом и равновесной с ним надкритической водной фазой свидетельствуют о большой селективности перехода металлов магмы в раствор в ларе и его зависимости от начального содержания хлоридов в магме. Пе мнению Г. Д. Холланда [Holland H.D., 1972] цинк и марганец могут пр,и благоприятных условиях быть количественно экстрагированы из гранитных магм. [c.91]

    Общая формула цеолитов ЛА2т0 А1а0з-п5102>АНзО. Здесь М — катион, имеющий валентность т п— коэффициент, характеризующий тип цеолита, иногда называемый силикатным модулем к — количество молекул воды. [c.392]

    Из нитратных сред экстрагируются координационно-сольва-тированные сульфоксидами соли, поэтому экстракция большинства металлов из нитратных сред с небольшой и постоянной ионной силой не зависит от варьирования концентрации водородных ионов. При экстракции циркония, гафния с ростом концентрации водородных ионов происходит увеличение коэффициента распределения (Д), что связано, по-видимому, с плохой экстракцией присутствующих гидролизованных форм катионов данных м< .таллов при низких концентрациях водородных ионов. При извлечении из хлоридных растворов сульфоксиды, по аналогии с ТБФ, могут экстрагировать хлориды ме- аллов по двум механизмам в виде координационио-сольватированных соединений МеХ и комплексных анионов, входящий, в состав ионных ассоииатов. [c.39]

    Опыты по определению изменения устойчивости эмульсии системы "узеньская нефть —0,1 %-й водный (на морской воде) раствор ДМАБАХ" для различных температур показали, что по сравнению с оптимальной температурой адсорбции сульфонола НП-1 из пресной воды на поверхности мангышлакской нефти происходит некоторый сдвиг в зону повышенных температур (около 60 °С). Это, очевидно, объясняется тем, что несколько большие, чем у сульфонола, размеры молекул данного катионного ПАВ обусловливают меньший коэффициент диффузии молекул ПАВ к границе раздела "жидкость-жидкость", что приводит к лучшему гелеобразованию на поверхности глобул нефти при более высокой температуре. При повышении же температуры системы свыше [c.100]

    Разработаны методики экспресс-определения ряда катионов редких, драгоценных и тяжелых металлов, хлора, кислорода, неорганических анионов, фенолов, аминов, гидразинов, альдегидов. Построены линейные градуировочные графики зависимости коэффициентов пропускания и диффузного отражения от концентрации микрокомпонентов с прямой пропорцианальной зависимостью или на основе функции Кубелки-Мунка-Гуревича. Погрешность определения с помощью стандартных цветовых шкал компараторов ЭКОТЕСТ 10-50% относительное стандартное отклонение для тестов ФОТОКО-ЛОРИМЕТРА-РЕФЛ ЕКТОМЕТРА 0,1-0,3. [c.106]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]


Смотреть страницы где упоминается термин Коэффициент катионита: [c.13]    [c.30]    [c.66]    [c.66]    [c.128]    [c.177]    [c.178]    [c.205]    [c.312]    [c.320]    [c.105]    [c.12]    [c.73]    [c.249]    [c.47]    [c.501]    [c.15]    [c.28]    [c.28]    [c.248]    [c.248]    [c.246]    [c.212]    [c.42]    [c.237]   
Пульсационная аппаратура в химической технологии (1983) -- [ c.121 ]




ПОИСК







© 2024 chem21.info Реклама на сайте