Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы теории молекулярных спектров

    Для расшифровки спектров необходимо знание элементов теории молекулярных спектров — представления о типах внутри- [c.117]

    Изменение спектра аммиака при молекулярной адсорбции (см. табл. 14) еще не говорит прямо об участии атома азота во взаимодействии с гидроксильными группами поверхности кремнезема, поскольку наблюдаемое изменение положения полос поглощения можно объяснить участием во взаимодействии только атома водорода групп ЫН. С целью более определенного установления типа структурного элемента молекулы аммиака, участвующего во взаимодействии с гидроксилированной поверхностью кремнезема, проведен анализ спектра адсорбированного аммиака на основе теории колебательных спектров [62] (см. главу II). Симметричное изменение всех соответствующих силовых постоянных молекулы ЫНз (см. рис. 2) приводит к большему изменению частот (см. рис. 7, кривая 1), чем соответствующее [c.238]


    Во-первых, для расчета термодинамических функций индивидуальных химических веществ и равновесий химических реакций методами статистической термодинамики необходимы наборы фундаментальных частот колебаний молекул соответствующих веществ. Во-вто-рых, частоты и интенсивности полос колебательных спектров используются для аналитических целей — определения состава естественных и синтетических продуктов, получаемых в промышленности и лабораторных исследованиях. В-третьих, эти данные могут быть использованы для установления химического строения или отдельных элементов химического строения новых соединений по их спектрам. Наконец, экспериментально установленные закономерности в частотах и интенсивностях полос колебательных спектров, в частности спектров комбинационного рассеяния, представляют больщой интерес для теории молекулярной спектроскопии. Они позволяют в принципе сделать некоторые заключения о закономерностях в строении молекул определенных рядов на основании экспериментально установленных закономерностей в их спектрах. [c.191]

    Оглавление показывает, что в названиях отдельных глав и их последовательности, т. е. в выборе содержания и построения книги, авторы довольно близко следовали книге Коулсона. В начальных главах даны элементы квантовой механики, теории валентности и теории атомных спектров. Далее излагаются основные методы теории электронных оболочек молекул — метод молекулярных орбиталей и метод валентных связей — в применении к двухатомным и затем к многоатомным молекулам. В последующих главах рассматриваются теория поля лигандов, д-электронное приближение в органической химии и некоторые специфические типы химических связей. [c.5]

    Объем книги и общий уровень изложения в ней не дают возможности систематически изложить основы квантовой химии, на автор стремился познакомить студента с основными методами ее необходимыми для понимания выводов и квантовомеханических представлений, используемых в книге. В дополнениях дана характеристика волнового уравнения Шредингера, основы квантовомеханической теории атома водорода и элементы квантовомеханической теории химической связи. Расширено рассмотрение молекулярных спектров. Значительное внимание уделено методам электронного парамагнитного резонанса, ядерного магнитного резонанса, нашедшим широкое применение при исследовании разных вопросов и уже на данной стадии развития подводящим к пониманию особенностей тонких и сверхтонких изменений в состоянии частиц. Введены основные сведения об элементах симметрии молекул и кристаллов. Описаны расчетные методы статистической термодинамики и основные понятия термодинамики необратимых процессов. Введено вириальное уравнение состояний и другие соотношения, используемые для расчета свойств неидеальных газов в широкой области температур и давлений. Приведен дополнительный материал, характеризующий особенности свойств веществ при высоких и очень высоких температурах. Описаны особенности внутреннего строения и свойств полимерных материалов. [c.12]


    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    Ни одна модель химической связи не будет в равной мере успешна в объяснении свойств всех соединений переходных элементов, Даже наиболее гибкий в теории химической связи метод молекулярных орбиталей в применении к переходным элементам страдает тем, что на неэмпирическом уровне требует большого объема вычислений, а на полуэмпирическом уровне его очень трудно параметризовать. И только в последние годы расчеты на основе метода молекулярных орбиталей дали до некоторой степени удовлетворительное объяснение структуры и спектров соединений переходных металлов. В противоположность этому эмпирическая теория, известная как теория поля лигандов, оказалась очень успешной в интерпретации свойств соединений переходных металлов важного, хотя и ограниченного класса. [c.249]

    При низкой энергии электронов (-10 эВ) молекулярному иону обычно соответствует наиболее интенсивный пик в масс-спектре. При энергии электронов 70 эВ интенсивность пика молекулярного иона определяется стабильностью молекулярного иона. Как правило, она падает вследствие последующего распада молекулярного иона. Поэтому наиболее интенсивный пик в спектре - необязательно пик молекулярного иона. Если при фрагментации молекулярного иона образуется более устойчивый карбкатион, стабилизированный электронными эффектами, то молекулярный пик имеет низкую интенсивность, а иногда может вообще отсутствовать в масс-спектре. В полном соответствии с теорией строения органических соединений наиболее стабильными являются молекулярные ионы ароматических соединений, а наименее стабильными - молекулярные ионы аминов, карбоновых кислот и спиртов. Для выявления молекулярного пика в случае малой его интенсивности необходимо иметь в виду, что соединения, содержащие элементы С, И, О, S, галогены, имеют четное массовое число. В этом случае действует азотное правило. [c.564]

    Целью этой главы является рассмотрение областей применения пектров ядерного магнитного резонанса (ЯМР) для структурных ш стереохимических исследований природных соединений. Общая теория ЯМР и применяемая аппаратура подробно описываются в обзорах [70, 746, 81, 124] поэтому здесь эти вопросы будут затронуты только в самых общих чертах для того, чтобы ознакомить читателя с используемой терминологией. В соответствующих разделах читатель найдет более детальную теоретическую трактовку ряда специальных проблем. Здесь подробно изложены вопросы, касающиеся самих объектов исследования и анализа спектров, причем особое внимание обращено на эмпирическую корреляцию между данными ЯМР и молекулярной структурой, поскольку для химика-органика, работающего в области исследования природных соединений, метод ЯМР представляет собой по существу еще один спектроскопический метод, с помощью которого можно получить информацию о числе и пространственном расположении атомов некоторых элементов в сложных молекулах. [c.204]

    В ряде случаев удается измерить скорость звука в поликарбонате в области плато высокоэластичности. Рассчитанное из этих измерений значение равно 1680. Это несколько меньше величины = 2300, которую получили Вада и сотр. , пользуясь теорией Марвина , из спектра времен запаздывания, рассчитанного из экспериментов по ползучести. Сравнительно низкое значение молекулярного веса элемента цепи, заключенного между двумя соседними зацеплениями, говорит о густой сетке зацеплений в этом полимере, причем средняя величина элемента этой сетки составляет 6—7 повторяющихся звеньев поликарбоната. [c.124]


    ГЛАВА VIII ЭЛЕМЕНТЫ ТЕОРИИ МОЛЕКУЛЯРНЫХ СПЕКТРОВ [c.151]

    Поскольку все величины, входящие под знаки интегралов в матричных элементах могут быть вычислены квантово-химическими методами либо из первых принципов аЬ тШо), либо с помощью разного рода параметрических представлений, то это и создает возможность сравнения теоретических спектров молекул с экспериментальными не только на уровне положения линий на шкале частот, но и их интенсивностей, т е достаточно полно Получающееся при этом удовлетворительное согласие экспериментальных и вычисленных величин, которое можно значительно улучшить шррекцией используемых в теории молекулярных спектров параметров моделей, и позволяет проводить надежную экспериментальную проверку правильности квантово-химических расчетов и адекватности результатов реальной природе Так как многие трудно наблюдаемые характеристики молекул (электростатическое поле, например) вычисляются с помощью тех же функций, что и спектры, то близость экспериментальных и теоретических спектров автоматически гарантирует и надежность вычисления других величин Именно в этом, как уже указывалось, и состоит смысл параллельных квантово-химических и спектральных экспериментальных и теоретических исследований Не случайно сей- [c.341]

    К настоящему времени было сделано относительно небольшое число попыток систематического изучения спектров переноса заряда, за исключением гексагалогенидных комплексов некоторых Ы- и 5й-элементов и некоторых цианидных комплексов. Однако этот вопрос продолжают интенсивно исследовать экспериментально, а недавно начатое использование теории молекулярных орбиталей в применении к комплексам намечает большие возможности для развития надежного теоретического подхода, который, безусловно, будет разработан в ближайшие годы. [c.499]

    В теории комплексных соединений переходных элементов нашла широкое применение т. н. теория ноля лигандов, тесно связанная с квантово-механич. теорией атомных спектров ионов-комплексообразова-телей и с общей теорией симметрии (теорией групп). В теории поля лигандов образование комплексного соединения рассматривается как результат электростатич. взаимодействия между центральным ионом переходного элемента и лигандами. Под действием электростатического поля лигандов (моделируемого обычно в виде поля точечных зарядов или точечных диполей), обладающего кубической (или более низкой) симметрией, происходит расщепление -уровней центрального иона, к-рое вызывает стабилизацию комплекса. Теория поля лигапдов оказалась пригодной для объясне1шя ряда закономерностей электронной структуры комплексных соединений, а также их оптических и магнитных свойств. Для более точного описания электронной структуры ко.мплексных соединений чисто электростатич. теория поля лигандов дополняется с учетом возможности образования в известной мере ковалентных связей между центральным ионом п лигандами такая уточненная теория использует представления о гибридизации волновых функций центрального иона и представляет собой синтез теории поля лигапдов либо с методом валентных схем, либо с методо.м молекулярных орбит. [c.266]

    Основные положения теории кристаллического поля изложены здесь очень кратко. Теория позволяет успешно интерпретировать в очень многих случаях спектры поглощения растворов, содержащих ионы переходных элементов. Следует, однако, иметь в виду, что при исследовании комплексов с ковалентными связями необходимо пользоваться теорией поля лигандов, которая является объединением теории кристаллического поля с методом молекулярных орбит Малликена [15]. В последние два-три года появились несколько статей и книг, посвященных этим вопросам, на русском языке. Среди них можно отметить статью Т. Данна в монографии Современная химия координационных соединений [16], книгу И. Б. Бер-сукера и А. В. Аблова Химическая связь в комплексных соединениях [17], книгу Л. Оргела Введение в химию переходных металлов [18] и особенно книгу К. Бальхаузена Введение в теорию поля лигандов [5]. [c.115]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]

    К настоящему времени получен обширный материал по величинам химических сдвигов О в различных соединениях [109— 112]. Величины б о и Oq заметно зависят от природы связан- х с атомом кислорода заместителей. Чрезвычайно большие парамагнитные сдвиги наблюдались" в растворах анионов типа МО" (где М — ионы -элементов) [112]. Это указывает на высокую степень парамагнитного экранирования О . Как и в случае б Со , в октаэдрических комплексах была найдена корреляция между величинами б и низших переходов в электронных спектрах этих анионов, что позволяет применить к интерпретации ЯМР 0 те же принципы теории Зайки и Слихтера [72], что и в случае ЯМР Со [73, 74]. Фиггис и др. [112] использовали для трактовки своих результатов по ЯМР О в оксианионах диаграмму молекулярных орбит, которая была применена для рассмотрения оптических переходов в этих анионах [113]. [c.230]

    Применение методов распознавания образов в масс-спектрометрии на первых порах почти всегда проводилось с использованием пороговых логических элементов. Такие распознающие системы принадлежат к категории линейных систем, поскольку масс-спектрометрические пики считаются в данном случае не зависящими друг от друга. Между тем теория масс-спектрометрии, равно как и фундаментальные основы классификации образов, позволяют предположить, что при подобной классификации можно было бы успешно использовать взаимодействия второго порядка (перекрестные члены, учитывающие зависимости между пиками). В статье [2] сообщается об использовании меры подобия к данным масс-спектро-метрии низкого разрешения для вывода перекрестных членов двух типов внутригрупповых (для объектов одной выборки) и межгруп-повых (для объектов нескольких выборок). Показано, что для полученных таким образом межгрупповых перекрестных членов существует большая вероятность корреляции с теми молекулярными признаками, которые можно положить в основу разбиения на категории. Это предположение было реализовано в виде классификаторов образов на пороговых логических элементах, проверявшихся на нескольких выборках масс-спектрометрических данных. Как оказалось, перекрестные члены расширяют возможности систем классификации образов либо ускоряя сходимость, либо повышая прогнозирующую способность этих систем, либо же обеспечивая и то и другое одновременно. [c.138]

    Дальнейшее развитие теория проницания Хигби получила в работе Данквертса, который ставит под сомнение существование ламинарной пленки на границе раздела фаз. По его мнению, турбулентные вихри достигают границы раздела фаз и элементы жидкости находятся в контакте с газовой фазой в течение какого-то времени, по истечении которого заменяются новыми. При этом предполагается чисто молекулярный механизм диффузии и вводится понятие вероятности смены каждого элемента жидкости новьш элементом или спектра времен пребывания жидких элементов на поверхности раздела. Турбулентные вихри жидкости и газа непрерывно подходят к границе раздела фаз, имея при этом концентрации диффундирующего компонента, равные концентрациям его в ядре жидкого потока и пузырька газа. На границе раздела фаз мгновенно устанавливается равновесие, и дальнейшее насыщение свежего элемента жидкости происходит за счет молекулярной диффузии до тех пор, пока новый турбулентный вихрь не передаст этот частично насыщенный элемент в ядро потока. Величина элемента жидкости принимается достаточно большой, так что фронт диффузии не успевает дойти до границы элемента за время контакта. Вероятность смены данного элемента жидкости новым не зависит от возраста элемента, а средняя скорость обновления поверхности жидкости, контактирующей с газовой фазой, зависит от гидродинамических условий и является величиной, постоянной при установившемся режиме. Для характеристики этой скорости вводится понятие фа ктора обновления поверхности 5, равного доле поверхности, которая обновляется в единицу времени. Коэффициент массопередачи определяется как [c.71]

    Для одноцепочечных полинуклеотидов существует приемлемая теория (теория Игнацио Тиноко), связывающая спектры ДОВ и КД со структурой. Недавно эта теория была подтверждена во всех деталях, и в настоящее время она позволяет вычислить с некоторой степенью точности спектр КД исходя из молекулярной структуры. Наиболее важный элемент этой теории заключается в том, что оптическая активность олигонуклеотидов есть ре- [c.473]


Смотреть страницы где упоминается термин Элементы теории молекулярных спектров: [c.460]    [c.288]    [c.64]    [c.99]    [c.421]    [c.113]    [c.288]   
Смотреть главы в:

Физическая химия -> Элементы теории молекулярных спектров

Физическая химия -> Элементы теории молекулярных спектров




ПОИСК





Смотрите так же термины и статьи:

Спектр молекулярный

Спектры элементов

спектры теория



© 2025 chem21.info Реклама на сайте