Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тарелка теоретическая определение

    Для теоретической ступени изменения концентрации (теоретической тарелки), согласно определению, в выражении (Х,81) величина Ур 1 = = у р. Следовательно, в данном случае , = 1. Подставляя это значение в уравнение (Х,83), получаем уравнение для расчета числа теоретических ступеней  [c.427]

    В случае систем с очень большим числом близкокипящих компонентов часто нет необходимости проводить полное разделение для их характеристики. Так, в случае смесей углеводородов, таких, как бензин, дизельное топливо и другие, достаточно определить, какая часть пробы перегоняется в определенном температурном интервале, например 75—80 °С. Можно также определить температуру, при которой определенный объем пробы находится в виде дистиллята. Поскольку данные такого анализа в значительной степени зависят от условий проведения опыта, необходимо применять стандартную аппаратуру, обслуживая ее строго по инструкции [58, 59]. Принцип фракционной дистилляции в ректификационной колонне заключается в про-тивоточном прохождении части конденсата и поднимающихся вверх паров, между которыми происходит интенсивный обмен. При этом пар обогащается наиболее легколетучим компонентом. Такая колонна в промышленности разделена на отдельные тарелки отсюда вытекает понятие теоретической тарелки. Теоретическая тарелка характеризуется состоянием установившегося равновесия между фазами. Число теоретических тарелок, необходимое для разделения, можно определить графически [58, 60]. [c.382]


    Из других методов определения числа теоретических тарелок особенно удобен метод расчета при помощи таблиц. В табл. 19 приведены данные для определения числа ТТ при использовании в качестве калибровочной смеси четыреххлористого углерода и бензола. Для пользования этой таблицей достаточно знать показатели преломления образца, взятого из перегонной колбы, и образца дистиллата. Разница между найденными значениями непосредственно дает число теоретических тарелок калибруемой колонки. В таблице приведены числовые значения количества тарелок с точностью до десятых долей тарелки. Точность определения никогда не превышает 0,5—-1,0 тарелки. Поэтому полученное число округляют до целого. [c.225]

    Барботажные абсорберы. Теоретическое определение массообменной способности барботажных абсорберов на основе теории массопередачи вызывает пока непреодолимые затруднения из-за отсутствия надежного метода расчета величины и формы межфазной поверхности, образующейся в барботажной слое. Эти параметры зависят от множества факторов, среди которых главную роль играют физические свойства жидкости н газа, гидродинамическая обстановка, устройство и конструктивные размеры барботажной тарелки. В связи с этим предложенные эмпирические формулы для расчета коэффициентов массоотдачи в газовой и жидкой фазах на барботажных тарелках имеют, в лучшем случае, лишь частное значение и не могут быть использованы для расчета промышленных абсорберов. [c.498]

    Число теоретических тарелок колонки для экстрактивной разгонки. Конечное разделение, которое желательно, соответствует степени обогащения, равной 51. При относительной летучести, равной 1,44, необходимое минимальное число теоретических тарелок равно 10. При ВЭТТ (высота, эквивалентная одной теоретической тарелке см. определение в гл. 1), равном для этой насадки [c.299]

    Понятие теоретической тарелки пришло в хроматографию из теории ректификации, где теоретическая тарелка соответствует определенному участку колонки, в которой пар и жидкость находятся в равновесии. В колоночной хроматографии эффективность работы колонки характеризуется как числом теоретических тарелок, так и высотой, эквивалентной теоретической тарелке (ВЭТТ), которая позволяет сравнивать колонки различной длины. Число теоретических тарелок пропорционально длине колонки. [c.9]


    Для теоретической ступени изменения концентрации (теоретической тарелки), согласно определению, в выражении (Х,81) величина г/p i = [c.427]

    С учетом движения жидкости по тарелке абсорбционные аппараты подразделяют на аппараты полного вытеснения, полного смешения и промежуточные. По этой классификации число реальных тарелок зависит от интенсивности перемешивания и выбранного типа аппарата. Поэтому при использовании метода теоретической тарелки для определения к. п. д. целесообразно принимать экспериментальные данные, относящиеся к определенному виду тарелки к. п. д. зависит от относительного направления движения газа и жидкости на тарелках и вдоль абсорбера, характера массопередачи на тарелке (отсутствие равновесия в практических условиях), степени уноса капель жидкости с газом и от других факторов. [c.224]

    Впоследствии метод теоретической тарелки был применен для расчета насадочных аппаратов (стр. 438), причем для определения высоты аппарата пользовались понятием высоты насадки, эквивалентной теоретической тарелке (ВЭТТ) определение этой высоты связано с значительными трудностями и величина ее не постоянна по высоте аппарата. [c.430]

    Из данных практики можно считать оптимальной работу колонки под давлением 200—250 мм рт. ст., когда для НгО — НВО величина а равна 1,053 . В основу расчета можно положить ту же формулу (8) предыдущей статьи и отбросить слагаемое, относящееся к параметрам кипятильника. Скорость подачи определяется степенью концентрирования и заданным выходом (согласно уравнению (9) той же статьи). Величина Н, представляющая в данном случае не объем колонки, а количество флегмы и пара, заключенные в ней во время ее работы, должна быть задана, основываясь на данных практики. Величина Н — 0,00005 рд л), где р — число теоретических тарелок д — сечение, вероятно, отвечает приемлемому и достаточно интенсивному режиму работы колонок Юри , где пар и флегма проходят сложный зигзагообразный путь через узкие промежутки между тарелками. Для определения сечения д в таких колонках можно принять эффективную линейную скорость пара 1000 м/ч (истинные скорости порядка 10000 м/ч). [c.283]

    Хотя осуществление противотока на тарелке и затруднительно, но возможно применить поперечный ток, который по эффективности занимает промежуточное положение между противотоком и прямотоком и, таким образом, более благоприятен, чем условия на теоретической тарелке. Поперечный ток имеет место, если жидкость на тарелке не перемешивается, а движется по тарелке в определенном направлении, так что ее состав по мере движения непрерывно изменяется. [c.212]

    Кения эквивалентной высоты теоретической тарелки при определении эффективности колонки). Коэффициент распределения К- мало зависит от веса растворяющей среды и габаритов колонки, но он зависит от температуры. Коэффициент распределения можно выразить через исправленный удерживаемый объем V J равенством  [c.18]

    Выше отмечалось, что число фактических тарелок в абсорбере определяется числом теоретических тарелок и коэффициентом полезного действия тарелки . По определению общий коэффициент полезного действия тарелки равен отношению числа теоретических тарелок к числу тарелок, фактически необходимому для данного разделения. Для некоторых типов тарелок к. п. д. для пара (по Мэрфри [16]) дает более точную оценку действительной работы тарелки по отношению к работе теоретической тарелки. Этот коэффициент можно вычислить из уравнения  [c.13]

    Каждая вершина ломаной ступенчатой линии, лежащая на кривой равновесия ОаВ, отвечает одной теоретической тарелке, включая и парциальный кипятильник. Каждая же ее вершина, лежащая на линии концентраций, отвечает определенному меж-тарелочному отделению. [c.145]

    Гипотеза теоретической тарелки, использованная для создания определенности при переходе от составов фаз в одном отделении колонны к составам фаз в смежном, выражает лишь идеализированную модель взаимодействия парового и жидкого потоков на тарелке и, хотя дает качественно правильную картину этого явления, тем не менее недостаточна для его количественной оценки. [c.207]

    Эта задача сводится к определению сравнительной эффективности или коэффициента полезного действия реальной тарелки, являющегося переходным фактором от теоретической ступени контакта к реальной. [c.208]

    Отклонение реальной тарелки от нормы для теоретической ступени контакта имеет следствием сужение разрыва между составами фаз па смежных тарелках, приводящее к увеличению числа реальных тарелок против теоретически необходимого для данного разделения. Причины подобного рода отклонений оказываются самыми разнообразными и зависят от множества условий, определяемых как рабочими параметрами режима колонны — давлением, температурой, количествами паровых и жидких потоков, так и свойствами разделяемой системы — плотностью и вязкостью паров и флегмы, относительной летучестью ее компонентов, поверхностным натяжением насыщенной жидкости. Следует также указать и на влияние чисто конструктивных факторов, таких, как тип тарелки, размеры сливного устройства, расстояние между тарелками. Учет совокупного действия всех указанных факторов весьма сложен, и этим объясняется широкое привлечение эмпирических корреляций для определения эффективности реальных тарелок. [c.209]


    Поднимаясь снизу вверх но высоте отгонной колонны и последовательно определяя массы, составы и температуры паровых и жидких потоков на ее тарелках, можно получить полное представление о характере работы колонны нри условиях, которые были заданы проектировщиком, принявшим условия существования р , in, Хп) равновесной системы в кипятильнике и закрепившим определенный режим Z/R) работы колонны. Понятно, что эти пять величин теоретически можно варьировать в весьма широких пределах, поэтому оптимальный режим, отвечающий наиболее экономичным условиям разделения, должен определяться путем технико-экономического сравнения ряда вариантов работы колонны. [c.235]

    Несколько сложнее определение числа независимых переменных для каскада, состоящего из г взаимосвязанных теоретических тарелок. Уже само число ступеней, из которых состоит каскад, представляет одну независимую переменную. Кроме того, от суммы г (2с Ц- 6) независимых переменных всех г ступеней следует отнять те переменные, которые при таком суммировании учитываются в межтарелочных отделениях дважды, один раз для потоков паров и флегмы, уходящих с тарелки, а второй раз для тех же потоков, поступающих на следующую ступень. В каждом из (г — 1) межтарелочных отделений имеется два таких потока — пары и флегма, и с каждым из них связаны (с + 2) независимых переменных, следовательно, всего 2 (г — 1) X (с + 2) переменных для каскада в целом. [c.350]

    Так ведется аналитический расчет числа теоретических ступеней контакта путем постепенного перехода от одного межтарелочного уровня к другому, с попеременным использованием соотношений фазового равновесия для нахождения составов расходящихся с тарелки потоков и уравнения концетраций для определения составов встречных на одном уровне потоков. [c.75]

    Поскольку механизм диффузионных, тепловых и массообменных процессов, протекающих на тарелке при ректификации многокомпонентных смесей, весьма сложен, общепризнанным является определение числа практических тарелок по расчетному числу теоретических тарелок. При этом учитывается к. п. д. тарелок, обусловленный их конструктивными особенностями, факторами гидродинамического, массообменного и теплового характера и др. Число практических тарелок рекомендуется определять из соотношения  [c.66]

    Методы расчета технологических параметров абсорбционного процесса, очевидно, должны быть основаны на уравнении массопередачи. При этом специфика процесса отражается в коэффициенте массопередачи, надежное же их определение встречает непреодолимые трудности, особенно при многокомпонентной абсорбции. В связи с этим для инженерной практики в 30-х годах Крейсером — Брауном был разработан метод расчета процесса абсорбции, в основе которого лежат понятия о теоретической тарелке и коэффициентах извлечения компонентов. [c.77]

    При расчете массообменных процессов переход от теоретических тарелок к реальным вызывает определенные затруднения, которые преодолеваются привлечением понятия коэффициента полезного действия тарелок. Коэффициент полезного действия теоретической тарелки равен единице, поскольку это идеальная тарелка. К. п. д. реальных тарелок меньше единицы, поэтому число реальных тарелок всегда больше числа теоретических тарелок, рассчитанного описанным способом. [c.78]

    К процессу разделения псевдоожиженных зернистых материалов методом ректификации применимы понятие о теоретических тарелках (или ступенях равновесия) и известные методы определения их эффективности. [c.490]

    Применение теории подобия показывает (см. главу IV), что массообменный процесс характеризуется критериями Нид = ЫО, Ргд = Ке = vLh. В течение ряда лет расчеты процессов осуществляли по уравнениям связи между критериями. Эти уравнения и сегодня используют для определения физико-химических постоянных (например, констант скоростей массопереноса), однако общий метод расчета процессов основан на использовании уравнений балансов и концепции единичного элемента процесса разделения — теоретической тарелки. [c.81]

    Недостатком указанного метода определения числа реальных тарелок является то, что трудоемкий точный расчет числа теоретических тарелок несколько обесценивается приблизительным определением к. п. д., поскольку обычно указывается весьма широкий диапазон его изменения для тарелки каждого типа. Более точно определять к. п.д. в зависимости от конкретной гидродинамической ситуации (нагрузки по пару и жидкости, их свойств, типа тарелки) пока невозможно. Поэтому при выбо- [c.81]

    При взаимной растворимости, составляющей более 10%, высота эквивалентной теоретической тарелки почти не зависит от диаметра колец. Уравнения (IV, 434) и (IV, 435) целесообразно использовать при экстракции из водных растворов. Для определения минимальной эквивалентной высоты насадки /г ц экстракционных колонн в режиме, близком к захлебыванию, для ориентировочных расчетов можно пользоваться уравнением [c.412]

    В зависимости от вида раздаляе <1ой с.меси математические модели можно подразделить на модели бинарной и многокомпонентной ректификации. Оба видд моделей могут быть построены либо на основании. принятой концет 1И теоретической ступени разделения, либо на основании модали практической тарелки с определенными допущениями 7]. [c.63]

    Ректификационная колонна предназначена для многократного повторения процессов испарения и конденсации. Обычно она состоит из испарителя, расположенного в нижней части, ряда тарелок и конденсатора в верхней части. На каждой из тарелок находится жидкость, через которую пробулькивает поднимающийся пар. Значительная часть этого пара конденсируется в конденсаторе, и образующаяся жидкость стекает вниз на тарелки. На фиг. 2.3. изображена ректификационная колонна с сетчатыми тарелками. Отверстия в тарелках настолько малы ( 0,6 мм), что проходящий через них пар не позволяет жидкости стекать вниз. Поэтому уровень жидкости на каждой тарелке определяется высотой перегородки, а излишек уходит через 1001 сливную трубу вниз на следующую тарелку. Теоретической тарелкой называется такая тарелка, на которой полностью достигается состояние равновесия (как это показано на фазовой диаграмме, фиг. 2.2) ). Обычно расчет ректификационной колонны производят, пользуясь числом эквивалентных теоретических тарелок. В идеальном случае пар, уходящий с данной тарелки, находится в равновесии с жидкостью на тарелке, согласно кривым фазового равновесия (см. фиг. 2.2.). Следовательно, жидкость на данной тарелке и пар на следующей нижней тарелке имеют одинаковый состав ). Необходимо, чтобы между тарелками существовала определенная разность температур, достаточная для поддержания одинакового давления паров над тарелками с жидкостью разного состава (в этом анализе давление можно считать постоянным по всей колонне). Необходимость такой разности температур (и разности составов жидкостей, находящихся на соседних теоретических тарелках) можно пояснить [c.94]

    При определении числа тарелок необходимо учитывать, что пар-цнальньсй конденсатор и кипятильник эквивалентны каждый одной теоретической тарелке. [c.219]

    Гипотеза теоретической тарелки не воспроизводит в точности действительной картины явления, нротекаюш его в контактной ступени, ибо основана на статическом представлении процесса. Тем не менее эта концепция позволяет осуществить анализ и расчет процесса разделения псходной смеси в ректификационной колонне и получить достаточно близкую к действительности картину реального процесса, несмотря на наше неумение вполне компетентно и всесторонне исследовать сложные явления массопередачи, происходящие на практической ступени контакта. Другим обоснованием целесообразности разработки термо-динамической теории ректификации является установившийся, по-видимому, окончательно взгляд, согласно которому ис- I следование и определение эф-фективности практических ступеней разделения оказывается, как правило, задачей менее трудной, чем непосредственное изучение диффузионной картины процесса ректификации в реальной колонне. Таким образодЕ, термодинамическая теория ректификации является пока первой ступенью общей теории ректификации. Для суяедения о направленности самопроизвольных процессов энергообмена и массообмена в отдельно взятой контактной ступени следует рассмотреть ее работу на основе метода теоретической тарелки. [c.123]

    Однако уравнение (111.145) можно использовать и для определения эффективности какого-нибудь участка тарелки это освобождает от необходимости пренебрегать градиентом состава флегмы но тарелке и в массе паров. В этом случае к. п. д. тарелки г ,- л называется локальным, он всегда меньше единицы при этом составы фаз будут относиться не ко всей тарелке, а к определенному локализованному участку, размер которого теоретически лшжет быть как угодно мал. [c.210]

    При рассмотрении работы ректификационной колонны, для определенности при переходе отсосгавоз фаз в одном межтарелочном отделении к составам фаз в соседнем, принимается гипотеза теоретической тарелки, выражающая простейлий случай взаимодействия фаз на тарелке и дающая качественно правильную картину процесса. [c.68]

    Расчеты абсорбционно-десорбционных процессов по методу Кремсера — Брауна в силу допущений, принятых при выводе формул абсорбции и десорбции, являются приближенными. ЭВМ позволяет отказаться от этих допущений и решать задачу в точной постановке. Известен метод расчета от тарелки к тарелке . Суть его сводится к тому, что для каждой тарелки решаются свои уравнения материального и теплового баланса и уравнение равновесия. Методом итераций достигают установившегося режима работы колонны. Основной недостаток этого метода — использование понятия теоретической тарелки (использование уравнения равновесия). Точное определение числа теоретических тарелок не имеет большого смысла, поскольку при переходе к реальным тарелкам приходится апеллировать к к. п. д. тарелок, выбор которого в определенных пределах произволен. Точный потарелочиый расчет приобретает смысл при определении мест ввода в колонну нескольких сырьевых потоков и (или) вывода нескольких продуктовых, что встречается при ректификации многокомпонентных смесей. [c.86]

    Для количественной оценки равновесных условий массообмена по аналогии с теоретической тарелкой (или теоретической ступенью) вводят понятие единицы переноса (или единичного объема). Под единицей переноса понимают элемент высоты колонны, для которого средняя движущая сила равна раэности концентраций на выходе и входе в элемент. В соответствии с этим определением интегралы в выражениях (5.6) и (5.7), взятые в пределах единицы переноса, равны 1 [346-348]. Поэтому соответствующие интегралы по всей высоте колонны равны числу единиц переноса (сокращенно ЧЕПс и ЧЕПд)  [c.219]


Смотреть страницы где упоминается термин Тарелка теоретическая определение: [c.182]    [c.384]    [c.384]    [c.294]    [c.227]    [c.232]    [c.75]   
Химический анализ (1966) -- [ c.518 ]




ПОИСК





Смотрите так же термины и статьи:

Тарелка определение

Тарелка теоретическая



© 2025 chem21.info Реклама на сайте