Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды свойства и применение

    Наибольшее применение находят стеклопластики на основе ненасыщенных полиэфирмалеинатных смол ПН-15, ПН-16 и на основе композиции смол ПН-10 и ПН-69, Максимально допустимая температура эксплуатации полиэфирных стеклопластиков в агрессивных средах приведена в табл. 6.3. Для плавиковой кислоты и фторидов аммония армирование первого футеровочного слоя выполняют из нетканого материала на основе лавсановых или пропиленовых волокон. Химическая стойкость бипластмасс определяется свойствами термопласта (см. 6.3), [c.99]


    В настоящее время резины из фторкаучуков используются для изготовления резинотехнических деталей — электроизоляции манжет для насосов, сальников, клапанов, прокладок, кольцевых уплотнений, мембран, которые длительно сохраняют свои свойства в контакте с маслами, топливами, окислителями и другими агрессивными средами. Резины на основе фторэластомеров широко используются в авиации, ракетной и космической технике, химической промышленности и др. Ожидаемое расширение температурного интервала эксплуатации резин от —60-ь70°С до 300—350 °С позволит решить еще ряд важных технических задач. В то же время следует отметить, что очень высокая стоимость фторкаучуков сильно ограничивает их применение. [c.521]

    Вулканизаты тиоколов, содержащие 0,5% сшив щего агента, набухают значительно больше ( на 50—100%) [15, с. 115]. Вулканизаты отечественных тиоколов марок I и П, имеющих одинаковую степень разветвленности, также несколько различаются по стойкости к набуханию в растворителях и действию агрессивных сред. Вулканизаты на основе тиоколов марки II меньше набухают в диоксане, дихлорэтане, циклогексаноне и лучше сохраняют свойства после выдержки в разбавленных серной, соляной и азотной кислотах [37]. Такое различие в свойствах объясняется примененной системой отверждения. [c.569]

    Полимеры тетрафторэтилена характеризуются высокой стойкостью к действию различных агрессивных сред и хорошей термической устойчивостью. Однако использование их в качестве защитных покрытий металлов затруднительно вследствие плохой адгезии политетрафторэтилена ко всем известным в настоящее время клеевым пленкам, при помощи которых можно было бы произвести крепление этого полимера к металлической поверхности. Для улучшения адгезионных свойств пленок политетрафторэтилена применен метод привитой сополимеризации его со стиролом. Пленки опускают в прививаемый мономер и подвергают у-облучению. При небольшой интенсивности облучения количество привитого стирола может достигнуть 10/О вес., однако пленка заметно увеличивается в объеме. При интенсивности облучения 350 рентген/час и длительности его воздействия 160 час. вес пленки удваивается. Еще более интенсивное облучение политетрафторэтилена и стирола приводит к заметному возрастанию скорости гомополимеризации стирола, поскольку в этих условиях он полимеризуется быстрее, чем успевает проникнуть во внутренние слои пленки полимера. Очевидно, в начале реакции прививка полистирольных боковых цепей происходит только на поверхности пленки. Образующийся в ее верхнем слое привитой сополимер набухает в мономере, и молекулы стирола проникают в следующие слои политетрафторэтилена. Следовательно, для получения однородного сополимера необходимо, чтобы [c.552]


    Физико-механические свойства вулканизатов, их стойкость к старению и воздействию агрессивных сред в значительной степени определяются типом полимера. Например, сопротивление разрыву ненаполненных вулканизатов повышается при увеличении вязкости по Муни и уменьшении непредельности бутилкаучука. Способность бутилкаучука к кристаллизации при растяжении обусловливает получение вулканизатов с высокой прочностью без применения [c.350]

    Нефтяной кокс — высококачественный углеродистый материал— и получаемый из него искусственный графит имеют очень широкую область применения благодаря редкому сочетанию физико-химических свойств. К этим свойствам относятся высокая электропроводность, термическая и химическая стойкость в агрессивных средах, сравнительно низкий коэффициент линейного расширения, легкая механическая обрабатываемость, удовлетворительные прочность и упругопластичные свойства. [c.66]

    Применение платиновых металлов в технике. По своим свойствам платиновые металлы являются для современной техники очень ценными конструкционными материалами (высокие температуры плавления, сопротивление агрессивным средам, механические свойства), но малое содержание и высокая стоимость (валютные металлы) резко ограничивают их применение. Однако платиновые металлы используются в современном машино- и приборостроении в тех случаях, когда они незаменимы. [c.377]

    Инертные наполнители применяются главным образом с целью экономии каучука и удешевления резины. Их применение может приводить к улучшению технологических свойств резиновых смесей н влиять на особые свойства резины, например на стойкость к действию агрессивных сред. [c.148]

    Высокопрочные УНС находят за последнее десятилетие широкое применение в производстве углеграфитовых материалов (УНС, подвергнутые графитации) и изделий из них (конструкционных материалов). Углеграфитовые материалы и изделия пз них занимают важное место, поскольку они обладают высокой теплопроводностью, инертностью к действию большей части агрессивных сред, малой чувствительностью к резким изменениям температур, способностью не смачиваться расплавленными металлами и другими свойствами. Кроме того, эти материалы можно легко обрабатывать обычными режущими инструментами, и для создания габаритной поверхности нужного качества затрачивается меньше труда. Существенный недостаток изделий из углеграфитовых материалов — вы- [c.102]

    Рассматривается механизм коррозии металлов (без покрытий к защищенных лакокрасочными покрытиями) в агрессивных средах. Подробно описываются механизм действия пассивирующих пигментов и ингибиторов коррозии в лакокрасочных покрытиях на основе различных пленкообразующих, а также свойства и применение ингибированных лакокрасочных покрытий для защиты металлов от коррозии в нейтральных и агрессивных средах. Рассмотрены ускоренные методы коррозионных испытаний металлов. [c.2]

    Высыхающие герметики на основе термоэластопластов занимают промежуточное положение между гуммировочными и лакокрасочными материалами, они образуют высокоэластичное покрытие при многослойном нанесении низковязких составов, не содержащих вулканизующих агентов. Широкое применение находят герметики 51-Г-Ю и 51-Г-17, свойства которых приводятся в табл. 6.7. Покрытие на основе герметика 51-Г-Ю защищает аппаратуру и строительные конструкции от воздействия агрессивных сред при различных температурах  [c.105]

    Работоспособность биметаллов определяет прочность соединения слоев, механические свойства биметалла в целом и рабочие характеристики плакирующего слоя (например, в случае применения в агрессивных средах — его коррозионная стойкость). [c.137]

    Достижения в исследовании влияния кремния нашли свое отражение в фирменной модификации стали 4340, названной 300 М, содержащей от 1,5 до 1,8% 81. В отношении механизма высказывались предположения, во-первых, что при наличии кремния е-карбид не может быть эффективным катодным центром для разрядки водорода [9, 17], во-вторых, что карбид повышает стойкость к растрескиванию, являясь ловушкой водорода [26], и, в-третьих, что кремний уменьшает коэффициенты диффузии вредных примесей, в частности водорода [15, 16]. Таким образом, роль кремния по существу не выяснена и может быть сложной, но положительный эффект хорошо подтверждается, особенно в случае высокопрочных сталей. Повышение стойкости сталей при введении кремния представляет резкий контраст по сравнению с отрицательным влиянием марганца, поэтому было бы целесообразно выбрать именно кремний в качестве легирующей добавки для повышения прочности и закаливаемости сталей, используемых в агрессивных средах. Однако такие добавки могут ухудшать обрабатываемость и свариваемость сталей, так что применение высоких концентраций кремния потребует тщательной разработки сплава с учетом всех свойств. [c.55]


    Для подшипников скольжения, работающих без смазки или без постоянного подвода смазки, очень ценным материалом является металлофторопластовая лента, применяемая в качестве антифрикционного материала. Свойства фторопласта-4 не изменяются вши-роком интервале температур полимер химически инертный, стойкий к агрессивным средам. Однако применение его в чистом виде для подшипников скольжения ограничено вследствие низкой механической прочности, хладотекучести, малой теплопроводности, высокого коэффициента термического расширения. [c.118]

    В современной химической промышленности наряду с металлическими конструкционными материалами все более широкое применение находят и неметаллические, в частности пластические материалы. Пластические материалы могут вступать в химическое азаимо-де(ит1зие с агрессивной средой или набухать в ней. Эти процессы часто сопровождаются и м( нением физико-химических и механических свойств пластмасс (электрических свойств, диета, веса, формы, механической [1ро лности н т. п.). Оценка химической стойкости пластмасс обычно производится по У я>/10И(>мию этих . пмПсгп, Однако до настоящего времени единая система оценки не разработана, хотя известен ряд качественных и количественных [c.805]

    Нефтяной кокс обладает редким сочетанием физикохимических и физико-механических свойств, благодаря которым он получил широкое применение во многих отраслях промышленности. К таким свойствам относятся термическая и химическая стойкость в агрессивных средах, сравнительно низкий коэффициент линейного расширения, достаточно высокая механическая прочность, высокая теплопроводность и электрическая проводимость, удовлетворительные упругопластические характеристики и др. Для приобретения этих свойств кокс должен пройти термическую обработку при температурах не ниже 650-750 °С, а некоторые двойства достигаются только после графитации кокса при температурах 2600-3000 °с Сз]. [c.12]

    Углеграфитовые материалы и изделия за пшают важное место, поскольку они обладают высокими теплопроводными свойствами, инертностью к действию большинства агрессивных сред, малой чувствительностью к резким изменениям температур, способностью ис смачиваться расплавленными металлами и другими свойствами. Кроме того, эти материалы легко обрабатываются обычными режущими инструментами и для создания габаритной поверхности нужного качества требуется меньше трудовых затрат. Существенный недостаток изделий из углеграфитовых материалов — высокая пористость (до 30% и более), обусловливающая малую герметичность конструкций, устраняется дополнительной обработкой их внутренней поверхности различными реагентами (углеводородными газами и парами, фурановыми соединениями, металлами и др.) или применением для этой цели специальной технологии (получение целлюлозного , стекловидного , волокнистого углерода). [c.44]

    ПекэБые покрытия аналогичны покрытиям иа основе битумных мастик. В связи с высокими диэлектрическими свойствами (удельное электрическое сопротивление покрытия в агрессивной среде длительное время составляет 10 — Ю "- Ом см) покрытия и его водостойкостью (водонасыщенность через год испытания — не более 1%) по сравнению с битумным позволяет уменьшить толщину изолирующих слоев до 2 мм. Благодаря этому повышается механическая прочность покрытия за счет улучшения армирующего эффекта обмоток. Токсичность пековых мастик ограничивает их применение при изоляционных работах. [c.97]

    Материалы на основе углерода занимают особое место в различных отраслях народного хозяйства благодаря сочетанию жаропрочности, механической прочности при высоких температурах, химической стойкости в агрессивных средах, фрикционным, антифрикционным, электрическим свойствам. Это единственные в природе вещества, способные увеличивать свою гфочность с возрастанием темнера туры. Сочетание прочности стали с легкостью пластмасс, непревзойденная жаростойкость, биологическая совместимость с живой материей (искусственный клапан сердца, протезы суставов и костей) все это позволяет создавать на основе углеродных материалов уникальные детали сложнейшей конфигурации, область применения которых простирается от медицины до космоса. [c.5]

    Никель имеет хорошие механические свойства и проявляет высокую коррозионную стойкость во многих агрессивных средах при достаточно высоких температурах. Однако никель — дорогой материал, поэтому в ап-паратостроении его используют очень редко. Широкое применение находят- сплавы никеля, основные достоинства которых — стойкость во многих агрессивт,1х средах и способность сохранять прочность при высоких температурах. Их применяют в тех случаях, когда требуется большая коррозионная стойкость материала в сочетании с его высокими механическими свойствами при высокой температуре или в сочетании с жаростойкостью. [c.16]

    Пековые покрытия аналогичны по технологии нанесения покрытиям на основе битумных мастик. В связи с высокими диэлектрическими свойствами покрытия (удельное электрическое сопротивление покрытия в агрессивной среде длительное время составляет 10 .. . . 10 Ом м) и его высокой водостойкостью (водонасыщенность через год испытания не более 1 %) по сравнению с битумным позволяет уменьшить толщину изолирующего слоя до 2 мм или при стандартнЬй толщине значительно увеличить срок службы. Благодаря более высоким механическим свойствам пеков повышается также механическая прочность всего покрытия. Токсичность пека ограничивает применение каменноугольных мастик для изоляционных работ. [c.87]

    Применение. Эти свойства, наряду с возможностью получения сложных форм без механической обработки, позволяют применить СУ в качестве специальных сосудов для производства полупроводниковых материалов, больших оптических монокристаллов, фторцирконатных и фторгафнатных стекол, имеющих малые оптические потери, полупроводникового арсенида галлия, металлов, в частности индия, и сплавов, деталей аппаратуры для особо агрессивных сред. [c.464]

    Сочетание атомов углерода разных гибридных состояний в единой полимерной структуре порождает множество аморфных форм углерода. Типичным примером аморфного углерода является так называемый стеклоуглерод. В нем беспорядочно связаны между собой структурные фрагменты алмаза, графита и карбина. Его получают термическим разложением некоторых углеродистых веществ. Стеклоуглерод — новый конструкционный материал с уникальными свойствами, не присущими обычным модификациям углерода. Стеклоуглерод тугоплавок (остается в твердом состоянии вплоть до 3700°С), по сравнению с большинством других тугоплавких материалов имеет небольшую плотность (до 1,5 г см ), обладает высокой механической прочностью, электропроводен. Стеклоуглерод весьма устойчив во многих агрессивных средах (расплавленных щелочах и солях, кислотах, окислителях и др.). Изделия из стеклоуглерода самой различной формы (трубки, цилиндры, стаканы и пр.) получают при непосредственном термическом разложении исходных углеродистых веществ, в соответствующих формах или прессованием стеклоуглерода. Уникальные свойства стеклоуглерода позволяют использовать его в атомной энергетике, электрохимических производствах, для изготовления аппаратуры для особо агрессивных сред. Стекловидное углеродистое волокно, обладая низким удельным весом, высокой прочностью на разрыв и повышенной термостойкостью, может найти применение в космонавтике, авиации и других областях. [c.450]

    Замечательные свойства хрома, заключающиеся в способности принимать пассивное состояние, сохранять блеск, противостоять коррозии в наиболее агрессивных средах, высокая поверхностная твердость и стойкость при работе на износ, обеспечили широкое применение его для защитных покрытий. Обычно считается, что металлический хром обладает высокой твердостью и значительной )узупкостью, однако за последние годы установлено, что очень чистый хром, не содержащий кислорода, углерода, азота и водорода, является пластичным и может быть обработан ковкой и прокаткой.  [c.515]

    Свойства и применение нолиизобутилепов. Вследствие предельного характера полиизобутилены обладают некоторыми очень ценными свойствами, в частности хорошей стойкостью против агрессивных сред. Одпако по той же причине до сих пор пе найдено способа вулканизации полиизобу-тиленов, поэтому они могут применяться только в сыром состоянии. Резина из нолиизобутилепов, как и всякая другая невулканизованная резина, обладает такими существенными недостатками, как термопластичность, склонность к течению на холоду и другими, что не может не ограничивать ее применение. [c.653]

    Окисление ге-ксилола или га-цимола ведется путем тесного смешения предварительно подогретого углеводорода с азотной кислотой перед входом в реактор (змеевик), где реакция окисления в указанных выше жестких условиях, протекает с большой скоростью. Выход терефталевой кислоты достигает 90%. Существенными отрицательными чертами этого метода являются 1) высокая агрессивность среды, что требует применения аппаратуры из материалов, особо устойчивых к действию азотной кислоты в жестких условиях 2) возможность взрывного течения процесса, например при повышении концентрации кислоты сверх оптимальной 3) загрязненность терефталевой кислоты продуктами побочных реакций нитрования, что затрудняет ее использование для некоторых видов изделий из полиэтилентерефталата (например, ухудшает электроизоляционные свойства пленки). [c.702]

    Уже определились следующие основные направления применения пластмасс в нефтяной, нефтехимической и газовой промышленностях как конструкционных материалов для деталей машин и аииаратов в качестве материала для труб как материала для емкостей для хранения и перевозки нефти для защиты машин и трубопроводов от воздействия химически агрессивных сред в качестве тампонажных материалов для особо тяжелых условий проводки скважины для крепления продуктивной зоны для улучшения технологических свойств глинистых растворов. [c.309]

    В спраиочнике приводятся данные по коррозии материалов D основных средах химических производств и нефтеперерабатывающих заводов, а также в воде н некоторых теплоносителях. От )ажено влияпие агрессивных сред на механические свойства металлических и неметаллических материалов. Приведены краткие технологические характеристики, сведения о состаие н области применения более 1000 марок материалов. [c.2]


Смотреть страницы где упоминается термин Агрессивные среды свойства и применение: [c.513]    [c.512]    [c.396]    [c.257]    [c.447]    [c.16]    [c.14]    [c.38]   
Коррозионная стойкость материалов (1975) -- [ c.229 , c.230 , c.235 , c.236 , c.238 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.188 , c.189 , c.229 , c.230 , c.235 , c.236 , c.238 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.188 , c.189 , c.229 , c.230 , c.235 , c.236 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные свойства

Агрессивные среды применение



© 2025 chem21.info Реклама на сайте