Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

облучением ультрафиолетовым облучением

    Ультрафиолетовое облучение можно использовать для обеззараживания водных СОЖ в тонком слое. Чувствительность микроорганизмов к УФ-излучению зависит от их вида. Так, наиболее чувствительны к нему грамотрицательные бактерии, промеж Точ-ное положение занимают грамположительные, "а бактериальные и плесневые споры, которые имеют плотную оболочку, наиболее устойчивы к не.му. Особенно чувствительны к УФ-излучению молодые бактериальные культуры, с возрастом стойкость бактерий к облучению заметно возрастает. Недостаток УФ-облучения — большое рассеяние излучения при обработке непрозрачных эмульсий. Установки для УФ-облучения рассмотрены в гл. II. [c.167]


    При облучении ультрафиолетовыми лучами гидрированного эргостерина образуется витамин 04. Таким образом, эргостерин и 7-дегидрохолестерин являются основными провитаминами витаминов >2 и Оз. Из сопоставления структурных формул провитаминов и витаминов О2 и О3 видно, что при облучении ультрафиолетовыми лучами происходит разрыв одного из содержащихся в молекуле эргостерина и 7-дегидрохолестерина ароматического кольца. [c.167]

    Под термином сульфохлорирование подразумевают совместное и одновременное действие двуокиси серы и хлора на парафиновые углеводороды цри ультрафиолетовом облучении. При этой реакции образуются ароматические сульфохлориды, которые вследствие своей высокой реакционной способности могут вступать в самые различные реакции. Сульфохлорирование представляет собой типичную цепную реакцию. Применение ее для химической переработки парафиновых углеводородов оказалось чрезвычайно плодотворным и работы в этом нанравлении продолжают быстро развиваться. Сульфохлорирование и сульфоокисление ароматических углеводородов в противоположность парафиновым углеводородам оказалось невозможным. Напротив, эти реакции даже подавляются ароматическими углеводородами и могут служить убедительным примером, доказывающим, что в некоторых случаях парафиновые углеводороды обладают даже большей реакционной способностью, чем ароматические. [c.11]

    При реакции сульфоокисления двуокись серы и кислород взаимодействуют с парафиновыми углеводородами нри ультрафиолетовом облучении или в присутствии органических перекисей, образуя алифатические сульфоновые кислоты. Прямое сульфирование парафиновых углеводородов серной кислотой, аналогичное проводимому с ароматическими углеводородами, невозможно. По-видимому, сульфоокисление позволяет преодолеть этот недостаток. [c.11]

    Эта закономерность, не изменяющаяся ни присутствием катализатора, ни облучением ультрафиолетовым светом, зависит (правда, в ограниченной степени) от температуры и давления реакции (см. главу IX). [c.199]

    А. Устранение хлорирования в углеродной цепи в реакции сульфохлорирования при ультрафиолетовом облучении [c.362]

    Если же процесс сульфохлорирования вести при ультрафиолетовом облучении, то хлорирование в углеродной цепи почти устраняется. Из этих двух конкурирующих друг с другом реакций — сульфохлорирования и хлорирования в углеродной цепи — первая в результате подвода энергии в виде ультрафиолетового света проходит значительно быстрее, чем вторая. [c.362]


    При облучении ультрафиолетовым светом чистого сульфохлорида парафинового углеводорода, полученного синтетическим путем, происходит отщепление двуокиси серы с образованием алкилхлорида. В результате осуществляется реакция десульфирования (обессеривание) сульфохлоридов, протекающая аналогично при нагревании  [c.365]

    Алифатические углеводороды можно легко сульфохлорировать сульфурилхлоридом при облучении ультрафиолетовыми лучами, если добавить неорганические катализаторы, такие, как хлор, тионил, хлорид, двуокись серы или сера [29]. Влияние таких добавок показано в табл. 111. [c.372]

    Сульфохлорирование сульфурилхлоридом при облучении ультрафиолетовыми лучами в присутствии неорганических катализаторов [30] [c.372]

    Образование сульфохлоридов газообразных парафиновых углеводородов протекает в газовой фазе взаимодействием углеводорода с хлором и двуокисью серы в стеклянной колбе, облучаемой ультрафиолетовым светом. Но этот способ невыгоден, так как связан с большими потерями хлора вследствие образования непропорционально больших количеств хлористого сульфурила. Гораздо выгоднее проводить сульфохлорирование в конденсированной системе (также при облучении ультрафиолетовым светом) введением этих трех газов в инертный растворитель, например четыреххлористый углерод, что оправдало себя наилучшим образом в лабораторных условиях и в полу-заводском и промышленном масштабе. [c.389]

    Реакцию сульфохлорирования жидких углеводородов проводят, пропуская хлор и двуокись серы при непрерывном перемешивании в жидкие углеводороды при ультрафиолетовом облучении. [c.398]

    Под сульфоокислением понимают совместное действие двуокиси серы и кислорода на насыщенные алифатические или алициклические углеводороды при ультрафиолетовом облучении. Формально сульфоокисление протекает по следующему уравнению  [c.481]

Рис. 92. Схема полупроизводственной установки для непрерывного сульфоокисления мепазина при ультрафиолетовом облучении. Рис. 92. Схема <a href="/info/1589136">полупроизводственной</a> установки для непрерывного сульфоокисления мепазина при ультрафиолетовом облучении.
    В промыщленном масштабе нет смысла работать по периодическому методу, который применяют для лабораторных целей. Как и при сульфоокислении, под воздействием ультрафиолетового облучения процесс необходимо оформить в виде непрерывного. При этом оказалось весьма целесообразным разделить процесс на две стадии и каждую из них проводить в отдельных аппаратах. [c.497]

    Она инициируется ультрафиолетовым облучением, введением озона, добавками перкислот или, что проще всего, добавками небольшого количества перекиси водорода. После этого процесс продолжается сам собой при непрерывной подаче небольшого количества уксусно о ангидрида и без участия перечисленных выше инициаторов. Оптимальная температура этой стадии равна 35—40°. [c.497]

    В случае наиболее важных парафиновых углеводородов, например мепазина и парафина , выходы и степени превращения малы, поэтому реакция не представляет практического интереса. Степень превращения циклогексана при 20-часовом ультрафиолетовом облучении смеси циклогексана и хлористого оксалила составляет 55% степени превращения метилциклогексана и метилциклопентана равны в тех же условиях 18% И соответственно 3,4%. [c.503]

    Эта закономерность, которую нельзя изменить ни применением катализаторов, ни применением ультрафиолетового облучения, зависит, правда в ограниченной степени, только от температуры. [c.545]

    При понижении температуры происходит обратное. Однако до настоящего времени еще не найдено условий, при которых относительные скорости реакций различных типов водородных атомов совершенно сравнялись бы. При равных скоростях замещения первичного и третичного атомов водорода из изобутана должно было бы получиться 90% первичного и 10% третичного хлористого изобутила. Но если хлорирование проводить фотохимически, то при —55° грег-бутилхлорида практически получают 58%, при +65° — 43% и при 450° — 28%. Следовательно, при —55° третичный атом водорода реагирует в 12 раз быстрее первичного, в то время как при 450 всего лишь в 3,5 раза. Качественно такая деградация наблюдается и для вторичного атома водорода. Она также нашла свое отражение в патенте [37], в котором отмечается преимущественное образование вторичных хлоридов при хлорировании неогексана при —30°. Поскольку температурный коэффициент фотохимических реакций очень невелик, хлорирование проводят при ультрафиолетовом облучении. Если принять, что скорости замещения первичного и вторичного атомов водорода относятся 1 3,25, газофазное хлорирование неогексана при 300° должно привести к образованию 65% первичного и 35% вторичного хлорида. При —30° это отношение совер- [c.545]

    VI. ДЕЙСТВИЕ ДВУОКИСИ СЕРЫ НА ПАРАФИНОВЫЕ УГЛЕВОДОРОДЫ ПРИ УЛЬТРАФИОЛЕТОВОМ ОБЛУЧЕНИИ [c.574]


    АЗОТА И ХЛОРА ПРИ УЛЬТРАФИОЛЕТОВОМ ОБЛУЧЕНИИ [c.574]

    Авторы окисляли н-гептан при ультрафиолетовом облучении (80°) и перегонкой при 0,08 мм рт, ст. выделили небольшие количества получающейся при этом гидроперекиси. Обработкой чистой гидроперекиси 10%-ным раствором едкого натра на масляной бале при 110° из нее получили около 70% гептана и 30% гептанола. Положение кетогруппы а неизвестном гептаноне определяли следующим образом. [c.587]

    VI. Действие двуокиси серы на парафиновые углеводороды при ультрафиолетовом облучении. . . ....... [c.623]

    IX. Совместное действие на парафиновые углеводороды окиси при ультрафиолетовом облучении....... [c.623]

    Окисление пропилена в метилацетате в присутствии ацетальде-гида [54] при 200 °С привело к получению 49,4 мол. % окиси пропилена. Ультрафиолетовое облучение и перекисные алкильные и ацильные соединения ускоряют окисление в присутствии ацетальдегида [55]. Добавки перекиси водорода пли алкилгидроперекисей в присутствии солей Си, Мп, Ni или Со также ускоряют окисление [561. [c.80]

    Озон — вещество эндотермическое (АЯ/,298 = 142,3 кДж/моль, 162,7 кДж/моль). Но тем не менее в отсутствие катализаторов или без ультрафиолетового облучения газообразный озон разлагается довольно медленно даже при 250°С. Жидкий озон и его концентрированные смеси (70% Од) взрывчаты. [c.321]

    С целью ускорения коррозионных испытаний питтинговую коррозию стимулировали ультрафиолетовым облучением. Коррозионные испытания длительностью 60 сут проводили в универсальной коррозионной камере в атмосфере солевого тумана, получаемого распылением 3%-ного Na l, 10 ч в сутки, температуру поддерживали равной 45° С и влажность 100%. Одновременно с этим образцы подвергали инфракрасному и ультрафиолетовому облучению. Источником инфракрасного излучения являлся силитовый стержень, ультрафиолетового — ртутно-кварцевая лампа. Интегральная интенсивность радиации составляла 7.9-10 Дж/(м -с). В остальное время облучение не проводили, темпе-)атура медленно снижалась до 20—22° С, влажность понижалась незначительно. 1ервые питтинги полусферического типа появились через 30 сут, и далее их число увеличивалось без заметных изменений размеров и формы (глубина в пределах 60—70 мкм). [c.87]

    При ультрафиолетовом облучении производные пиридина превращаются в высоко напряженные соединения, которые могут приводить к изомерам пиридина или способны реагировать с другими соединениями с образованием стабильных веществ. Из пиридинов [113] и 2-пиридонов [114] при облучении образуются 2-азабицикло[2.2.0]гексадиены и 2-азабицикло[2.2.0]гексеноны. В случае простых производных пиридина такие соединения нестабильны и термически превращаются обратно в ароматические соединения, однако в случае [c.124]

    Стимулирование метаболизма арахидоновОй кислоты в коже человека под воздействием ультрафиолетового облучения (100—290 нм) изучали Грейс и соавт [267], которые использо вали ХМС метод с изотопным разбавлением для количествен ного определения арахидоновой кислоты, РОЕ2 и РОРг в коже (в норме и после облучения) Содержание всех трех соеди нений повышалось после облучения, однако предварительный [c.190]

    В 1914 г. В. Генри обнаружил среди выживших после облучения ультрафиолетовым светом бактерий большое количество, как он считал, наследственных вариантов, отличающихся от нормального типа по таким свойствам, как морфология колоний и патогенность. Из этого наблюдения Генри заключил (за 13 лет до того, как Мёллер доказал мутагенное действие рентгеновских лучей на плодовую мушку), что ультрафиолетовые лучи мутагенны для бактерий. Однако доказательство этого утверждения пришло лишь много лет спустя с расцветом в сороковых годах генетики бактерий, когда Демерец показал, что среди 10 клеток Е. соИ штамма Топ (чувствительного к фагу Т1), выживших после облучения определенной дозой ультрафиолетовых лучей, доля мутантов Топ более чем в тысячу раз превышает спонтанный уровень этих мутантов среди необлученных бактерий. Вскоре ультрафиолет стал одним из наиболее широко распространенных мутагенов, используемых для получения мутантов бактерий. Многие мутанты, которые упоминались в предыдущих главах, были отобраны среди клеток, выживших после облучения ультрафиолетом немутантного родительского штамма. Так, например, были получены использованные в опытах по конъюгации (гл. X) Hir- и Р -штам-мы Жакоба и Вольмана с множественными мутациями, а также мутанты Тгр Яновского, использованные для изучения тонкой генетической структуры генов trp (гл. XIV). Однако, хотя молекулярный механизм спонтанных мутаций, а также мутаций, индуцированных аналогами оснований и акридиновыми красителями, к 1960 г. был достаточно хорошо изучен (см. гл. XIII), выяснение механизма мутаций, вызванных ультрафиолетом — исторически первым и долгое время наиболее широко распространенным бактериальным мутагеном, — задержалось до тех пор, пока не был выяснен механизм репараций. [c.381]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    При действи сернистого ангидрида и хлора на парафиновые углеводороды в условиях ультрафиолетового облучения или в присутствии образующих радикалы веществ образуются алифатические сульфохлориды по уравнению [c.133]

    Одновременно с собственно сульфохлорированием, как важнейшая побочная реакция, протекает только одно хлорирование углеродной цепи без одновременного присоединения двуокиси серы. При проведении сульфохлорирования в условиях рассеянного освещения, реакции сульфохлорирования и хлорирования углеродной цепи протекают с практически одинаковой скоростью, так что в молекуле на каждый атом серы приходится приморио двойное количество атомов хлора. Если реакция сульфохлорирования проводится в условиях облучения ультрафиолетовым светом или в присутствии образующих радикалы веществ, как перекиси, тетраэтилсвинец, диазомотап и т. п., хлорирование углеродной цепи приобретает второстепенное значение и практически идет только сульфохлорировашге. [c.137]

    Фотохимический процесс можно применять также для хлорирования высокомолекулярных, твердых при нормальных условиях, парафиновых углеводородов, например парафинов нефтяных или синтетических Фишера-—Тропша, а также для хлорирования высокомолекулярного контактного парафина и полиэтилена. Для хлорирования сырья с температурой плавления ниже 70° можно пропускать хлор при облучении ультрафиолетовым светом в расплав или растворяя исходное сырье в четыреххлористом углероде. Так, например, хлорированием 3%-ного раствора полиэтилена в четыреххлористом углероде можно получать продукт, содержащий 73% хлора, имеющий температуру размягчения выше 200° и разлагающийся выше 230°. [c.148]

    При бромировании нитропарафннов в отсутствие оснований, но в присутстви пятиокиси фофсора и при облучении ультрафиолетовым светом получаются те же продукты (как показали Райли и Мак-Би [25]), что и в присутствии щелочей. [c.272]

    Под сульфохлориро ванием понимают оавместиое действие двуокиси серы и хлора на насыщенные алифатические углеводороды при облучении ультрафиолетовыми лучами. [c.356]

    Согласно этим выводам являетоя несомненным, что определенная часть сульфохлорида, образованная при совместном действии хлора и двуокиси серы на парафиновые углеводороды при ультрафиолетовом облучении, снова под действием света десульфируется в алкилхлорид по приведенному выше уравнению. [c.365]

    Так как при этой операции хлор в углеродной цепи почти не омыляется, то аналитически можно установить, какой процент всего связанного с углеродом хлора содержался в виде хлористого алкила и какой в виде хлорсульфохлорида. При незначительном хлорировании в углеродной цепи, как при сульфохлорировании н-парафинов при облучении ультрафиолетовыми лучами, можно считать, что в хлористо.м алкиле хлор содержится главным образом в виде алкилмонохлорида. [c.376]

    Первичным продуктом реакции по-прежнему является циклогексилсульфоновая перкислота, однако, чтобы она образовалась, необходимо длительное ультрафиолетовое облучение. [c.485]

    Эта реакция, обнаруженная Карашем и Брауном, состоит в действии хлористого окоалила или фосгена на циклоалифатические и парафиновые углеводороды в присутствии органических перекисей или при ультрафиолетовом облучении [23]. [c.503]

    В 1949 г. Дэйнтон и Айвин установили [34], что при ультрафиолетовом облучении смеси парафинового углеводорода и двуокиси серы образуются сульфиновые кислоты по уравнению [c.505]

    При ультрафиолетовом облучении смесей парафина с двуокисью серы образуются сульфиновые кислоты (см. стр. 505). Дэйтон и Айвин [94а], открывшие эту реакцию, показали, что если парафином является пропан или н-бутан, то получается смесь изомеров, причем в случае н-бутана в ней преобладает вторичный продукт замещенйя. Это согласуется с результатами, полученными при хлорировании и сульфохлорировании. Точный состав смеси не был определен. [c.574]

    Мюллер и Метцгер [94д] обнаружили, что при ультрафиолетовом облучении совместное действие хлора и окиси азота на н-гептан приводит к хлорнитрозосоедипениям, в которых обе функциональные группы расположены у одного и того же атома углерода. [c.574]


Смотреть страницы где упоминается термин облучением ультрафиолетовым облучением: [c.170]    [c.291]    [c.243]    [c.124]    [c.140]    [c.259]    [c.483]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

облучение



© 2025 chem21.info Реклама на сайте