Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм деформации

    Очевидно, что новой осью вторичного блока в центральной зоне является линия ОО , т. е. старая ось первичного блока. Вблизи этой оси, в соответствии с рассмотренным механизмом деформаций, происходит дополнительное опускание среды в направлении полюса О и, следовательно, возникает вторичная сводовая структура, под которой образуется вторичная полость пониженного давления. В центральной зоне ранее сформировавшегося первичного блока условия для интенсивного развития такой полости менее благоприятны вследствие отдаленности ранее образовавшейся периферийной зоны, в которой находится менее дифференцированное в предшествующий период вещество средней плотности. Активная начальная стадия функционирования центральной вторичной полости проявляется в опускании поверхностного слоя легких веществ, аналогичном опусканию среды вблизи участка, отмеченного точкой на рис. 83. Это является причиной возникновения упомянутой вторичной распорной сводовой структуры над местом опускания. Так как действие периферийной вторичной полости пониженного давления полностью не исчезает, то в первичном блоке некоторый период времени одновременно существуют две вторичные распорные сводовые структуры. Одна из них (периферийная) уменьшается в размерах и при этом сни- жается интенсивность ее действия другая (центральная) увеличивается в размерах, что приводит к непрерывному возрастанию 10 п. и. Лукьянов 145 [c.145]


    Для более точного описания механизма деформации реальных полимеров, в которых одновременно протекает множество процессов с самой различной скоростью (раскручивание и ориентация тех или иных участков макромолекул, перестройка элементов надмолекулярной структуры и т. д.), необходимо пользоваться более сложными моделями н целым спектром времен релаксации, охватывающим у каучуков, например, интервал от 0,0001 с до нескольких часов. Важные сведения о характере этого спектра можно получить, исследуя полимер в вязкотекучем состоянии при синусоидальном изменении напряжения. Подробнее см. [12, 17]. [c.399]

    Вследствие агрегатно-сдвигового механизма деформации зернистого слоя в зоне выпускного отверстия концентрация твердых частиц изменяется во времени. Это является причиной пульса-ционного изменения расхода сыпучего материала на выходе из отверстия. [c.106]

    В гидротермальной области (при температуре 100—700°С) вода образует устойчивые пленки по границам зерен силикатных пород рассматриваемый механизм деформации здесь весьма вероятен, но экспериментальные данные пока отсутствуют. [c.91]

    Таким образом, пластифицирующее действие водосодержащих сред может проявляться в разной степени в зависимости от конкретного механизма деформации, преобладающего в тех или иных условиях. Наибольшие эффекты (ускорение ползучести на несколько порядков величины) возможны в тех случаях, когда вследствие своей поверхностной активности жидкость образует устойчивые прослойки. Достаточно высокая растворимость в ней твердых компонентов обеспечивает значительные диффузионные потоки, а геометрия системы способствует эффективному массопереносу. [c.91]

    Трение стеклообразного полимера складывается, как и для твердых тел, из адгезионной и объемно-механической составляющих. С понижением температуры адгезия между фрикционной парой заметно увеличивается, а сила трения возрастает довольно медленно. При этом изменяется механизм деформации шероховатостей на поверхности — из вынужденноэластического превращается в упругий. При этом уменьшается площадь фактического контакта, и сила трения с понижением температуры падает. [c.363]

    Модель сплошной пластически деформируемой среды недостаточно отражает действительный механизм деформации зернистого слоя. Упомянутые выше визуальные наблюдения и инструментальные измерения выявляют весьма сложную картину этого процесса. Главная его особенность состоит в том, что деформация слоя происходит в виде прерывистых сдвигов агрегатов частиц, каждый из которых в период его существования выполняет роль структурного элемента. При дальнейшем выпуске эти агрегаты теряют свою индивидуальность, границы между ними исчезают, образуются новые агрегаты другой формы и размеров. [c.74]


    Теория Штаудингера имела много недостатков. Отрицая способность макромолекул к ассоциации, невозможно было объяснить особенности процессов растворения, а также свойства полимеров в твердом состоянии и в растворах. Представление о макромолекулах как о жестких палочках также оказалось несостоятельным. В настоящее время гибкость макромолекул и их способность значительно изменять свою форму доказаны экспериментально. На основании этого стало возможным установить механизм деформации полимеров и влияние гибкости цепи на процессы растворения, плавления и т. д. [c.51]

    Многие ученые пытались выяснить механизм деформаций. Было высказано предположение, что пограничные слои вообще обладают особыми свойствами поэтому каждое тело в физическом смысле необходимо разделять на пограничный слой и ядро, включая в качестве третьей составляющей среду, которая окружает данное тело. Пограничный слой подвергается одновременно воздействию сил ядра и среды п потому обладает новыми свойствами, к которым относятся явления поверхностного натяжения, адсорбции, электростатического заряда и т. д. Все это необходимо учитывать при гетерогенном катализе, [c.126]

    Перемещение надмолекулярных структур в плотной массе полимера может осуществляться по механизму, близкому у дислокационному. В этом смысле существует аналогия с механизмом деформации кристаллических полимеров. [c.148]

    После того как шейка сформировалась, процесс растяжения переходит в стадию III образец растягивается как единое целое, перестройка надмолекулярной структуры теперь уже не происходит. Механизм деформации аналогичен таковому на первой стадии, но применительно к высокоориентированному образцу. Деформации составляют также несколько процентов или десятки процентов (стадия III, рис. 10.2). [c.149]

    Коэффициент термического расширения находится в сложной зависимости от температуры. Характер этой зависимости показан на рис. 6.3. Приведены данные для температур до 170 °С,, так как более высокие температуры превышают предел термической стойкости материала. Детально механизм деформации АТМ-1 в интервале температур 130—170 °С еще не выяснен — происходит ли простая деформация [c.160]

    Нейтронное облучение и его параметры (спектр нейтронов, интегральная доза и температура облучения) с учетом представлений о механизме деформации и разрушения бериллия могут существенно влиять на механические свойства материала. Роль облучения на развитие разрушения бериллия будет рассмотрена в следующих [c.18]

    Одно из уникальных свойств полимеров — эластичность — можно объяснить в рамках простой гауссовой модели. Эластичность — это способность к большим обратимым деформациям. Механические свойства полимеров, как и др тих упругих материалов, описываются законом Гука. Однако наибольшая величина деформации, которую материал способен выдержать без разрущения, у полимеров на несколько порядков больше, чем у обычных твердых тел. Предел упругих деформаций стали или стекла составляет несколько процентов, тогда как у эластичного полимера, например каучука, он выражается сотнями процентов. В обычных материалах упругая деформация возникает в результате небольшого (на проценты) изменения межатомных расстояний и углов кристаллической решетки. Очевидно, что эластичность невозможно объяснить таким механизмом деформации. Гигантские величины обратимых деформаций полимерных веществ обусловлены тем, что при действии деформирующего усилия (например, растяжения образца) происходит распрямление молекулярных цепей, а при снятии деформирующего усилия цепи вновь сворачиваются в клубки. Сворачивание в клубки происходит не потому, что в распрямленной цепи возникли какие-либо напряжения (типа тех, что появляются в растянутой стальной пружине). Таковые просто отсутствуют. Состояние и распрямленной, и свернутой в клубок цепи механически одинаково устойчиво. Не существует сил, которые делали бы предпочтительным одно из таких состояний. Причина сворачивания цепи в клубок иная — вероятностная. Существует один способ так расположить звенья цепи, чтобы макромолекула приобрела максимально возможный размер, равный ее контурной длине гЫ. В го же время имеется множество вариантов (порядка 3 ) такого расположения звеньев, при котором расстояние между концами макромолекулы станет равно ее среднестатистической величине К = Каждый из вариантов изогнутого состояния реализуется при тепловом движении звеньев с той же вероятностью (частотой), что и единственное состояние предельно вытянутой молекулы, поэтому растянутый клубок непременно перейдет в одно из многочисленных свернутых состояний под влиянием только лишь теплового движения звеньев. [c.730]

    Первые исследования усталостного поведения нанокристаллической Си, полученной компактированием, были недавно осуществлены в работе [365]. Эти эксперименты проводились с целью исследования стабильности внутренней структуры при повторяющихся сжимающих нагружениях. Как известно, эволюция микроструктуры при усталостных испытаниях происходит в первую очередь благодаря движению дислокаций в прямом и обратном направлениях. В этом смысле циклические испытания на растяжение и сжатие представляются подходящими для исследования таких основных усталостных свойств, какими являются циклическое упрочнение и эффект Баушингера. Исследования этих явлений имеют целью установить механизмы деформации в наноструктурных материалах. [c.213]


    Железные соли карбоновых кислот представляют собой системы мылообразного типа, по характеру близкие к консистентным смазкам, широко описанным в специальной литературе и представляющим собой стабилизированные водой мыльно-масляные гели. На основе данных реологических исследований, электронной микроскопии разработаны представления о строении и механизме деформации таких систем. Консистентные смазки представляют собой дисперсные системы с поликристаллической дисперсной фазой. Кристаллы мыла имеют форму волокон-лент длиной до сотых долей микрона. Смазки обладают каркасом, являющимся рыхлой пространственной конструкцией, заключающей в себе многократно превышающее ее по весу и объему количество дисперсионной среды. Связи между отдельными агрегатами и волокнами мыла способны легко возникать и разрушаться под действием теплового движения. [c.216]

    Указанная классификация обусловлена принципиальным различием в механизме деформации основ, введенных в виде суппозиториев в прямую кишку, а следовательно, и различными условиями высвобождения и всасывания лекарственных веществ, инкорпорированных в водорастворимые и жировые основы. [c.275]

    В связи с принципиальным различием в механизме деформации основ и, следовательно, в условиях всасывания, а также в связи с требованиями, предъявляемыми к водорастворимым и жировым основам, важнейшее значение как с технологической, так и с биофармацевтической точки зрения имеют именно эти два тина основ для суппозиториев. [c.278]

    До сих пор мы рассматривали механизм деформации упруговязких полимерных тел только с внешней стороны, феноменологически, не интересуясь связью этого явления с поведением самих цепных молекул. [c.399]

    Макк [35] изучал механизм деформации битумных дорожных смесей под действием псстоянных нагрузок. Он пришел к заключению, что механические характеристики зависят от характера нагрузок, действующих на дорожное покрытие. Он указывает, что деформация битумных дорожных покрытий состоит из мгновенной и обратимой эластической деформации, за которой следует пластическая деформация, сопровождающаяся твердением. Процесс твердения зависит от вязкости и ускоряется с возрастанием сжимающего давления и продолжительности приложения нагрузок до их определенной величины. Макк считает, что дорожное покрытие в. состоянии отдыха обладает мшшмальжтй потенциальной энергией. Под действием нагрузок частицы, находящиеся в упорядоченном состоянии, редко покидают свое место, в то время как другие частицы перемещаются из состояния неупорядоченного в упорядоченное.. При максимальном значении коэффициента пластического сдвига число частиц в неупорядоченном состоянии приближается к нулю. Изменение свободной энергии активации перехода из неупорядочен-, ного в упорядоченное состояние и масса частиц также максимальны в этой точке. Процесс твердения битумного покрытия можно сравнить со слиянием неупорядоченных частиц в частицы большей, массы. [c.149]

    Образование газовых пузырей и нарастание давления газа в них с повышением температуры приводит к двум основным механизмам деформации графитовых слоев при тепловом ударе развитию трещин в графитовых чешуйках (клиновидным дефектам) и скручиванию слоев. Деформация графитовой матрицы в сочетании с нагревом и переходом от МСС к ТРГ спос< бствует образованию в составе ТРГ трехмерноупорядочентых объемов. Об этом свидетельствуют лауэграммы образцов ТРГ, на которых появляются линии от косых плоскостей (А к I), отсутствовавших в МСС. [c.358]

    Типичная кривая зависимости удлинения от растягивающего усилия для полимеров с значительной начальной степенью кристалличности напоминает соответствующую кривую вынужденноэластической деформации полимерных стекол и состоит пз трех практически прямолинейных участков, соответствующих стадиям деформации (рис. 133). Следует, однако, подчеркнуть, что, несмотря на такое внешнее сходство, в механизмах деформации этих двух типов материалов имеются характерные отличия (см. ниже). [c.452]

    Для непрерывной АЭ число превышений заданного уровня и описывается гауссовским законом при широкополосной регистрации и релеевским - при узкополосной, как этого и следует ожидать в соответствии с ранее изложенным. Отклонения от этих закономерностей, как правило, свидетельствуют о существовании нескольких механизмов деформации. Например, амплитудный анализ убеждает, что при скольжении преобладают компоненты эмиссии с малой амплитудой. Если деформация осуществляется как скольжением, так и двойникованием, то амплитудное распределение характеризуется наличием двух пиков, каждый из которых соответствует своему механизму деформации. Таким образом, анализ амплитудного распределения позволяет оценить соотношение между энергиями, необходимыми для скольжения и двойникования. [c.171]

    Ниже приведены первые результаты исследования механических свойств наноструктурных материалов, полученных методами ИПД. Особое внимание уделено изучению влияния особенностей структуры на высокопрочные состояния, сверхпластические свойства и усталостное поведение. Обсуждаются вопросы механизмов деформации наноматерйалов, пути достижения уникального комплекса свойств. [c.183]

    При рассмотрении модели складчатой фибриллы можно предположить, что избирательное сшивание по вершинам петель складчатой структуры приводит к тому, что проходные цепи в неупорядоченных областях остаются свободными и сохраняются возможности перетекания сегментов из одной складчатой структуры фибриллы в другую, а следовательно, и высокая деформируемость материала (при гомогенной вулканизации проходные цепи сшиваются в первую очередь, и этот механизм деформации в основном не реализуется). Сохранение в вулканизате морфологических структур каучука (как кристаллических [35], так и аморфных [36]) можно рассматривать как подтверждение предложенной схемы гетерогенной вулканизации. [c.111]

    Релаксационные явления в полимерах. Как указывалось выше, особенности деформационных свойств полимеров, в том числе и аномалия вязкости, являются следствием релаксационного механизма деформации. Существенной особенностью полимеров является то, что релаксационные процессы перегруппировки цепных макромолекул и их агрегатов под действеим внешних сил протекают чрезвычайно медленно, не заканчиваясь иногда в течение многих суток. При действии внешних сил на простые жидкости величины сил межмолекулярного взаимодействия и размеры молекул таковы, что эти перегруппировки при комнатной температуре протекают очень быстро, за ничтожные доли секунды (10 —10 с). Очевидно, что чем выше вязкость при прочих равных условиях, тем медленней протекают релаксационные процессы. Естественно ожидать у полимеров, обладающих очень длинными молекулами и имеющими огромную вязкость, больших значений этого времени. Однако гибкость цепей полимера чрезвычайно усложняет релаксационные процессы. Гибкость макромолекул полимера означает некоторую свободу движения отдельных ее частей. Перемещение же этих участков, размеры которых могут быть весьма различны в разные моменты времени и в разных местах макромолекул, будет происходить с различной скоростью. Поэтому у полимеров наблюдается сложный ралексационный процесс, состоящий из множества одновременно идущих простых релаксационных процессов с весьма различными временами релаксации. Макромолекулы, кроме того, способны к образованию различных надмолекулярных структур и имеют различную молекулярную массу. Все эти образования обладают различной подвижностью и разным временем релаксации. Поэтому релаксационные процессы в полимерах могут быть описаны с помощью широкого набора времен релаксации, содержащего как очень малые, так и очень большие их значения, т. е. спектром времен релаксации. [c.21]

    Таким образом, физико-механические свойства всех систем, начиная от высокомолекулярных веществ и их растворов и кончая структурированными дисперсными системами, могут в принципе исследоваться общими методами реологии (реологией наз 1вается общее учение о деформации и течении). Такие исследования имеют преимущество перед простыми измерениями аномальной или структурной вязкости неньютоновских жидкостей (рис. 96), потому что структурная вязкость зависит от условий изм-терения, тогда как реологические константы характеризуют материал независимо от размеров прибора или режима течения. Образование или разрушение различного рода структур или пространственных сеток частиц или мюлекул с различной прочностью связей и жесткостью структурных элементов играет ис1 лючительную роль в дисперсных и полимерных системах и во многих отношениях определяет их техническое использование. Поэтому изучение процессов деформации, их кинетики, частотной зависимости, предельных напряжений и др. имеет большое научное и техническое значение. Установление релаксационного механизма деформации и объективных методов характеристики процессов деформации является существенным успехом коллоидной химии, во многом обусловленном работами советских ученых — Кобеко, Александрова, Каргина, Слонимского, Ребиндера, Соколова, Догадкина и др. [c.251]

    Деформирующая сила влияет не только на размеры, но и на структуру тела. Для полимеров характерны большие и обратимые изменения структуры, сопровождающие их деформацию. Эти изменения особенно велики в области высокоэластического состояния при деформациях, близких к раврушающим. При рассмотрении влияния надмолекулярной организации полимеров на их прочность необходимо вспомнить, из каких компонент состоит общая деформация полимерного тела. После снятия деформирующей нагрузки под влиянием теплового движения совершается переход к термодинамически равновесному состоянию, соответствующему нулевому значению деформирующей силы. Наблюдение за ходом процесса дает ценную информацию относительно кинетики и механизма деформации и разрушения полимерных материалов. [c.200]

    Одна из особенностей полимерных материалов заключается в том, что нелинейная (негуковская) часть деформации может на порядок превышать величину линейной части деформации. В обычных твердых материалах эти виды деформации близки по величине, что обусловлено различным механизмом деформации полимеров и кристаллических материалов. [c.736]

    Каждое из этих состояний характеризуется особым механизмом деформации. Так, например, в стеклообразном состоянии полимеры проявляют преимущественно собственно упругость. Деформация в зтом случае связама в основном с изменением валентных углов, равновесных межатомных и межмолекулярных расстояний она обратима, невелика и практически не зависит от времени. Напряжение не зависит от скорости деформации н незначительно снижается при повышеиии теипературы. [c.53]

    По-видимому, установленным можно считать соотношение между уровнем непрерьшной АЭ и скоростью пластической деформации вида Сдэ При неизменном механизме деформации в широком диапазоне скоростей деформации согласно выводам [24] такая связь представляется естественной. Предложена более общая формула сТаэ где -1,5 5 0,5. [c.170]

    Из сказанного следует, что разрушение твердого полимера при температуре выше Т.р, представляет собой сложный процесс, со-СТ0ЯШ.ИЙ из разрушения формы образца при переходе через предел вынужденной эластичности, и из разрушения материала на отрыв с разделением образца на части. Первый этап разрушеиия происходит путем деформаций сдвига без нарушения целостности материала. Молекулярный механизм деформации сдвига состоит в перемещении и ориентации сегментов полимерных молекул под действием внешних сил. Второй этап состоит в прорастании трещин в ориентированном материале. Появление сдвн- [c.71]


Смотреть страницы где упоминается термин Механизм деформации: [c.88]    [c.92]    [c.251]    [c.133]    [c.186]    [c.197]    [c.194]    [c.88]    [c.185]    [c.248]    [c.138]    [c.167]    [c.251]    [c.380]    [c.107]    [c.94]   
Высокодисперсное ориентированное состояние полимеров (1984) -- [ c.119 , c.127 , c.131 , c.132 , c.135 , c.144 ]




ПОИСК





Смотрите так же термины и статьи:

Вытяжка механизм деформации волокна

Деформация деструкционный механизм

Деформация коиформационный механизм

Деформация механизм при разной величине удлинения тканей

Деформация молекулярный механизм

Изменение надмолекулярной структуры полимеров при деформации Механизм деформации монокристаллов

Механизм деформации волокон

Механизм деформации каучука и резины

Механизм развития вынужденной эластичности при деформации сшитых жестких полимеров совместно с подложкой

Механизмы деформации и разрушения

Механизмы деформации и структурные модели

Молекулярный механизм деформации эластомеров при тяжелых механических воздействиях. Химическое течение

О механизме деформаций в структурах

Пайерлсовский механизм пластической деформации двойникованием

Петерлина механизм пластической деформации

Структурные превращения. Механизмы деформации

Узлы передачи деформаций (приводы и преобразователи движеСамопишущие механизмы

Функции распределения, введенные на основании механизма деформации

Экспериментальные и теоретические исследования механизмов деформации

Ячейки механизм деформации



© 2025 chem21.info Реклама на сайте