Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение беспорядочное

    Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. У кристаллических твердых тел упорядочение распространяется на огромное количество межатомных расстояний, т. е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами, или кластерами ), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частицами между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной сво- [c.238]


    Атомы, входящие в состав молекулы органического вещества, не находятся в беспорядочном состоянии, а соединены в определенном порядке, причем на соединение их друг с другом затрачивается определенная доля химического сродства. Последовательность соединения атомов в молекуле А. М. Бутлеров назвал химическим строением. [c.10]

    Легко установить, что векториальность свойств кристаллов не обусловливается той или иной геометрической формой кристалла. Так, шар, выточенный из слюды, несмотря на полную симметричность его формы, сохраняет анизотропию, и наоборот, какой бы формы многогранник ни был отлит из обычного стекла, оно не приобретает от этого векториальности свойств. Как геометрическая форма, так и анизотропия кристаллов являются следствием особенности внутреннего строения кристаллов. Частицы, из которых состоит кристалл (молекулы, атомы или ноны), не беспорядочно, а закономерным образом расположены в пространстве. Упорядоченность расположения частиц была подтверждена экспериментально, когда после 1911 г. в результате разработки метода рентгеновского анализа открылась возможность определять расстояния между частицами в кристаллах на основе опытных данных. [c.123]

    Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881—1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже. [c.135]

    Структура эффективных цементов подобна структуре стекол они состоят из элементов, почти полностью соответствующих теоретическим представлениям о строении беспорядочных стекловидных структур в отношении низкой координации и высокой прочности связи. [c.15]

    Схемы беспорядочного (а), стеклообразного (б) и кристаллического (б) строения [c.13]

    Очень длинные молекулы каучука беспорядочно свернуты и непрерывно меняют форму. Эта особенность строения каучука и обусловливает его эластичность (Мейер) если удалить силы, растягивающие каучук, а тем самым и отдельные его молекулы, то молекулярные цепи снова сжимаются и сворачиваются в клубки, поскольку такая форма молекул статистически более вероятна. При низкой температуре (—60 ) каучук теряет эластичность и превращается в твердую хрупкую массу. Это изменение состояния вызывается прекращением беспорядочного движения, лежащего в основе эластичности, так как при низких температурах кинетическая энергия слишком мала для того, чтобы преодолеть силу притяжения между соседними цепями. [c.951]


    Сферолитовая структура (рис. 2-14) состоит из агрегатов частичек со сферической симметрией сферолитов размером 0,5— 5 мкм, морфологически весьма сходных со сферолитами полимеров. Для них характерно беспорядочное расположение центров формирования фрагментов с хорошо выраженной молекулярной ориентацией. Центральный участок сферолитов имеет слоистое строение, однако типичным для них является радиальный характер структуры (рис. 2-14, а). Столбчатые структуры располагаются радиально относительно включений, состоящих из первичной а -фракции, нерастворимой в хинолине. На рис. [c.58]

Рис. 100. Строение макро-молекул сополимеров а — статистический сополимер с беспорядочным чередованием звеньев 6 — регулярный сополимер в — блок-сополимер г — привитый сополимер ф — звено одного мономера О — звено другого мономера Рис. 100. Строение макро-<a href="/info/1590338">молекул сополимеров</a> а — <a href="/info/128952">статистический сополимер</a> с беспорядочным <a href="/info/730116">чередованием звеньев</a> 6 — <a href="/info/177037">регулярный сополимер</a> в — <a href="/info/413">блок-сополимер</a> г — привитый сополимер ф — звено одного мономера О — <a href="/info/1478652">звено другого</a> мономера
    Жидкости занимают промежуточное положение по отношению к газам и кристаллам не только по характеру расположения частиц п интенсивности межмолекулярного взаимодействия, но и по характеру теплового движения частиц, которое также является важнейшей характеристикой строения вещества. В кристаллах тепловое движение атомов, ионов или молекул наблюдается в виде колебаний около фиксированных положений равновесия, в разреженных газах — в виде беспорядочных движений молекул. У жидкостей тепловое движение реализуется в виде непрерывных сочетаний колебательного и трансляционного движений частиц. Поэтому в отличие от кристалла в жидкостях имеются только временные положения равновесия. [c.25]

    Автором агрегативной гипотезы О. К. Ботвинкиным было высказано предположение, что сушествующие в жидкости при высокой температуре химические соединения сохраняют свою индивидуальность и в стеклообразном состоянии. По его представлениям, у любой жидкости, которая может переходить в стеклообразное состояние, всегда сушествуют мгновенно возникающие группировки сложных анионов, или агрегаты. Величина их примерно 0,10—0,13 нм. Если принять, что существующие в расплаве ионы 810з " и 31205 и т. п. могут разрастаться п цепочки и слои, то исходя из известного расстояния между атомами кремния в 0,25—0,29 нм, получим число тетраэдров в группах-агрегатах равным приблизительно 4, Отсюда следует, что агрегат — это обрывок цепи или слоя, состоящий из небольшого количества тетраэдров. Агрегат может обладать геометрически упорядоченным строением. Беспорядочные сочетания таких агрегатов и составляют каркас стекла. При стекловании вначале образуются агрегаты, а затем они соединяются в каркас. Процесс стеклования завершается тогда, когда агрегаты связываются в пространственный каркас. [c.198]

    Обе приведенные формулировки второго начала термодинамики fie связаны с какими-либо конкретными представлениями о строении материи. Однако, как впервые показал Л. Больцман (1896), содержание второго закона обусловлено особенностями строения, а именно молекулярной природой вещества. Иными словами, второе начало (в отличие от первого) относится исключительно к системам из большого числа частиц, т. е. таким, поведение которых может быть охарактеризовано статистическими величинами, например температурой и давлением. В связи с этим с точки зрения молекулярно-кинетических представлений второе начало термодинамики можно сформулировать следующим образом все процессы, происходящие в природе, стремятся перейти самопроизвольно от состояния менее вероятного к состоянию более вероятному. Для молекул наиболее вероятным является беспорядочное, хаотичное движение, т. е. тепловое движение. Работа характеризуется более или менее упорядоченным движением частиц, каковое является менее вероятным. Отсюда самопроизвольный переход работы в теплоту можно рассматривать как переход молекулярной системы от упорядоченного движения частиц к более вероятному — хаотическому. [c.65]

    Ские жидкие Кристаллы отличаются более высоким порядком ориентации молекул по сравнению с нематическими. Молекулы располагаются также параллельно вдоль своих длинных осей. Центры масс молекул скоординированы. Вследствие этого жидкий кристалл имеет слоистое строение. Однако слои могут располагаться по-разному один к другому. Так, в разновидности смектической фазы а (рис, 111.56, Б) центры масс молекул в слоях лежат в плоскостях, перпендикулярных длинным осям молекулы. В этих плоскостях расположение центров масс беспорядочно. У смектической фазы б центры молекулярных масс в слоях располагаются в плоскостях, параллельных длинным осям молекул. У фазы а одна ось симметрии, а у фазы б две оси симметрии. Третья разновидность смектической фазы в наблюдается в случае гексагональной упаковки молекул в отдельных слоях. У фазы в единственная степень свободы трансляционного движения — скольжение слоев относительно друг друга. [c.244]


    Под структурой тела следует понимать не только строение кристаллической решетки монокристалла, но и дисперсную структуру обычного поликристаллического тела, представляющую собой сросток отдельных более или менее беспорядочно расположенных [c.7]

    Механические свойства твердых тел непосредственно связаны с их строением —структурой тела, действующими в нем молекулярными силами сцепления и особенностями хаотического теплового движения. Именно из-за тесной связи со структурой тел механические свойства часто называют структурно-механическими. При этом под структурой твердого тела следует понимать не только строение кристаллической решетки, но и дисперсную структуру обычно мелкозернистого — поли-кристаллического твердого тела, представляющего собой сросток отдельных, беспорядочно расположенных кристалликов различных размеров. [c.170]

    Молекула любого вещества не является беспорядочным скоплением атомов. Все атомы, входящие е состав молекулы, связаны между собой в строго определенной последовательности и на их соединение затрачивается определенная доля химического сродства. Порядок взаимосвязи атомов в молекуле А. М. Бутлеров называл химическим строением. [c.298]

    Свойства сополимеров изменяются не только в зависимости от природы мономеров, но также от их соотношения, метода сополимеризации, температуры, инициирования и т. д. Обычно сополимеры имеют нерегулярное строение, так как в их цепях различные элементарные звенья расположены беспорядочно, и нельзя выделить периодически повторяющийся участок цепи. В связи с участием в реакции нескольких мономеров и соответственно нескольких образующихся радикалов сополимеризация значительно осложняется. Так, при двух мономерах рост цепи может протекать по крайней мере четырьмя путями [c.458]

    Характерные свойства каучука определяются тем, что он состоит из агрегатов очень длинных молекул, беспорядочно переплетающихся между собой. Строение больших полимерных молекул каучука определяет их тенденцию к беспорядочному (некристаллическому) расположению и, следовательно, затрудняет кристаллизацию. [c.360]

    Сополимеризация двух простейших мономеров — этилена и пропилена — осуществляется на катализаторах Циглера — Натта, которые применяются и для получения гомополимеров из каждого из этих мономеров. Интересной особенностью этой сополимеризации является ее статистический характер в сополимере этилена и пропилена отсутствует регулярность чередования звеньев мономеров в цепях, и расположение групп СНз в звеньях пропилена атактичное. Этот сополимер характеризуется высокоэластическими свойствами в широком температурном интервале, тогда как гомополимеры пропилена и этилена, полученные на подобных каталитических системах, высококристалличны, имеют строго регулярное чередование звеньев в цепи (изо- или синдиотактический полипрог илен линейный полиэтилен) и являются жесткими пластиками. Нарушение регулярности строения, беспорядочное чередование звеньев этих двух мономеров в полимерной цепи обусловливают гибкость макромолекул и их высокоэластичность. [c.66]

    Макромолекулы линейного строения представляют собой длинные, зигзагообразные или закрученные в спираль цепи, которым свойственна больщая гибкость. Относительно друг друга линейные макромолекулы могут быть расположены беспорядочно, образуя сложные системы спутанных нитей, как это показано на рнс. 55. Увеличение размеров линейных макромолекул, особенно прн большой полярности образующих их звеньев, усиливает взаимодействие нх между собой, что проявляется в уменьшении летучести, ио-вышенин температуры размягчения, увеличении механической прочности и твсрдостн при низких температурах и вязкости прн высоких температурах, чему способствует также тесное переплетение макромолекул, затрудняющее их внутреннее передвижение. Однако многие линейные полимеры (особенно алифатические ноли-углеводороды) при низкой температуре сохраняют достаточную пластичность. [c.375]

    Тенфу [155], подтвердив методом рентгеноструктурного анализа сложность строения молекул асфальтенов, показал, что в ас-социироваином состоянии их пространственная структура напоминает структуру кристаллитов углерода, по в отличие от иих, ассоциаты, имеют слабые энергпи связи тина Ван-дер-Ваальса. По его мнению, 5—6 молекул асфальтенов могут образовывать пачку со следующими размерами диаметр ассоциата La = S,5—15 А, толщина L =16—20 А. Базисные плоскости асфальтенов, образованные конденсированными ароматическими ядрами, распо.поже-ны беспорядочно, на расстоянии d = 3,55—3,70 А друг от друга. [c.30]

    Как известно, из двух главных структурообразующих факторов (ненаправленные силы межмолекулярного взаимодействия, отличающиеся дальнодействием, и направленные короткодействующие межатомные связи) первый представляет собой кристаллообразующее начало, обусловливающее плотную укладку структурных единиц в симметричные периодические структуры, отвечающие минимуму свободной энергии второй ответствен за строение самих структурных единиц, а для твердых атомных соединений — и за порядок их соединения в структуре соответствующих твердых веществ, например полимеров. Подчеркнем, что речь должна идти именно о порядке сборки структурных единиц, что беспорядочное строение аморфных веществ — не фатальная необходимость, а лишь следствие того, что природа не позаботилась вложить во все процессы отвердевания механизмы, примиряющие конкуренцию различных структурообразующих факторов. Но мы знаем, что существуют и такие процессы, в которых действие различных структурообразующих факторов определенным образом направлено в сторону образования регулярных, хотя часто и непериодических структур. Это процессы биологического синтеза. Известно, что в таких процессах действует программирующее устройство — матрица, по структуре которой строятся сложнейшие полимеры, и притом, как правило, с совершенной воспроизводимостью. [c.158]

    Жидкая фаза - промежуточная между твердой и газообразной. При высоких температурах и не слишком высоких давлениях она проявляет сходство с газовой фазой. При температурах, близких к температуре плавления, жидкость, наоборот, близка по строений и свойствам к кристаллическим телам. Применение рентгенографических методов анализа позволило обнаружить, что расположение частиц в жидкости при температурах, близких к кристаллизации, не беспорядочно, как в газах, но оказывается весьма сходным с правилмым расположением, в которое оно переходит при кристаллизации жидкостей. Наиболее резко этот факт проявляется для. органических веществ с сильно вытянутыми молекулами. Он интерпретируется многими авторами как сохранение при плавлении кристаллического тела некоторой степени ближнего порядка в относительном расположении частиц при ликвидации дальнего поряд- [c.158]

    Шелк Шардонне, медно-аммиачный шелк и вискозный шелк в химическом отношении представляют собой регенерированную, пере-осажденную целлюлозу, и для них не могут совершенно бесследно пройти те различные химические воздействия, которым целлюлоза подвергается в процессе переработки. Они обладают признаками некоторого неглубокого расщепления слегка повышенной восстановительной способностью, большей гигроскопичностью и увеличенной восприимчивостью к красителям. Некоторые из этих особенностей отчасти объясняются тем, что физическое строение искусственного шелка отличается от строения волокна природной целлюлозы. Мельчайшие частицы целлюлозы, ее мицеллы, или кристаллиты, расположены в нитях искусственного шелка в большей пли меньшей степени беспорядочно, а не ориентированы вдоль оси волокна, как в природной целлю.тозе. На физические свойства волокна оказывает влияние ослабление связей между мицеллами и увеличение активной поверхности. Это приводит к повышению адсорбционной способности искусственного шелка по отношению к воде и красителям, а также к уменьшению химической и механической прочности. Устойчивость искусственных и природных волокон целлюлозы по отношению к действию ферментов тоже не одинакова волокна искусственного шелка при действии целлюлазы , содержащейся в улитках и других беспозвоночных, сравнительно легко и полно превращаются в сахара, тогда как расщепление природной клетчатки (хлопка) происходит значительно медленнее. [c.465]

Рис. 12, Строение поликри-сталлического тела а — беспорядочное расположение зерен б — малоугловая граница зерен н винтовые дислокации декорированные золотом в — межкрнсталлитная прослойка вдоль малоугловой границы зерен Рис. 12, Строение поликри-<a href="/info/584973">сталлического</a> тела а — беспорядочное расположение зерен б — <a href="/info/696933">малоугловая граница</a> зерен н <a href="/info/12270">винтовые дислокации</a> декорированные золотом в — <a href="/info/1475406">межкрнсталлитная</a> прослойка вдоль <a href="/info/696933">малоугловой границы</a> зерен
    Кварцевое стекло представляет собой переохлажденный расплав двуокиси кремния. Его строение можно схематически представить как пространственную сетку, построенную из структурных. единиц п8Ю4/, (где п=1, 2, 3,. .., Пг) таким образом, что ни в одном направлении нельзя найти периодического расположения атомов или других структурных единиц. Структурные единицы 5104/, связаны между собой кислородными мостиками 81 — О—81, угол связи в которых может менять значение от 90 до 180°. Мы уже знаем, что непериодическая структура может быть одно-, двух- и трехмерной, т. е. иметь вид цепи, сетки или каркаса, которые в той или иной мере деформированы во всех трех направлениях. Уже отсюда видно, что каждая такая структура определенным образом упорядочена. Подчеркнем, что вообще о хаотическом, т. е. совершенно беспорядочном, соединении каких бы то ни было атомов не может быть и речи. На увеличение порядка в расположении атомов при переходе вещества в твердое, хотя и аморфное состояние указывает понижение энтропии на 15—25 кал-моль 1-град 1. Некристаллические тела можно рассматривать как многоатомные молекулы, находящиеся в твердом состоянии. Многие из них — не что иное, как многоядерные комплексы, в которых электронные пары, связывающие соседние группы структурных единиц (ядра), занимают двухцентровые орбитали. [c.118]

    Основные положения о внутреннем строении стекол были высказаны впервые А. А. Лебедевым (1921), который на основании изучения процесса отжига и закалки стекол пришел к выводу о наличии в структуре силикатного стекла микрокристаллических образований. Кристаллитная гипотеза А. А. Лебедева исходит из предположения о наличии в структуре стекол каркаса из беспорядочно расположенных атомов или ионов, составляющего основную массу вещества. Этот каркас включает в себя участки, в которых степень упорядоченности постепенно возрастает, причем в структуре стекол появляются элементы упорядоченности, приближающиеся к кристаллическим структурам. Таким образом, теорией допускается непрерывный переход от кристаллических центров с неполным комплексом элементов симметрии к полностью неупорядоченной пространственной сетке. Последующие исследования О. К- Ботвинкина, К- Н. Воленкова, Е. А. Порай-Кощица и др. подтвердили такие представления и привели к дальнейшему развитию кристаллитной теории. [c.65]

    Если полимер содержит в основной цепи молекулы двух или более двух разных мономеров, то он является сополимером и название его образуют обычно из названий этих мономеров (например, бутадиен-сти рольный сополимер). Строение сополиме ров более сложное, чем полимеров, состоя щнх из одного мономера (гомополимеров) Так, если звенья двух мономеров соедине ны в макромолекуле беспорядочно, то та К011 сополимер называется статистическим При правильном чередовании звеньев мо номеров в цепи макромолекулы говорят о чередующемся сополимере. При достаточно большой протяженности участка, состоящего из одного мономера (он составляет, как говорят, блок данного мономера), сополимер называют блок-еополимером. Если блоки одного из мономеров присоединены к основной цепи макромолекулы, состав-леи(юй из звеньев другого мономера, в виде больших боковых ответвлений (т. е. образуется разветвленная макромолекула), то сополимер называется привитым (рис. 2). Структура сополимера характеризуется химическим составом, длиной блоков или привитых цепей, а также числом блоков или прививок в макромолекуле. [c.10]

    Многие полипептиды и белки исследовались с помощью рептгепос1руктурного анализа. При этом были подтверждены некоторые характерные особенности их структуры. Наиболее часто встречаются два типа организованной вторичной структуры, хотя нередко молекулы белков имеют более беспорядочное строение. В а-.форме полиамидная цепь свернута в спираль, в [c.301]

    К протяженным дефектам (второго рода) относятся микротрещины, открытые и закрытые микрокаверны, дислокации, мозаика, под которой понимают, строение кристалла из маленьких блоков, располагающихся беспорядочно. [c.139]

    Жидкое состояние. Структура жидкости. Жидкость имеет много общего с твердым состоянием. Компактное расположение частиц обусловливает высокую плотность и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей и твердых тел во многом схожи и характеризуются упорядоченным расположением частиц. В кристаллических твердых телах упорядочение распространяется на огромное количество межатомных расстояний, т.е. ближний порядок переходит в дальний. В жидкости вследствие относительно высокой подвижности частиц упорядоченность ограничивается небольшими островками (агрегатами или кластерами), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частиц между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной свободой перемещения частиц. Образование лабильных агрегатов в жидкости наблюдается даже при температурах, намного превышающих температуру кристаллизации. С понижением температуры стабильность таких агрегатов увеличивается и вблизи температуры кристаллизации жидкости имеют квазикристалличе-ское строение, т.е, возрастает количество агрегатов, они становятся больше по размерам и начинают определенным образом ориентироваться друг относительно друга. [c.144]

    Физические свойства металлов. Физические свойства металлов объясняются особым строением их кристаллической решетки. Кристаллы металлов состоят из положительных ионов, находящихся в узлах кристаллической решетки, и обобщенных валентных электронов ( электронногогаза ), которые беспорядочно перемещаются между ионами и удерживают их в сближенном состоянии. Такой вид химической связи называется металлической связью. При достаточном сближении электронов с ионами образуются нейтральные атомы, которые тут же снова распадаются на ионы и электроны. Поэтому в металлах всегда имеются как положительно заряженные ионы и электроны, так и небольшое количество нейтральных атомов. Между ними существует своеобразное равновесие  [c.280]

    При наличии границ раздела фаз полимер — форма или полимерный рой — среда может развиваться процесс укладки макромолекул по поверхностным границам раздела в достаточно протяженные ориентированные участки со слоистой структурой. Неплавкие термореактивные полимеры в процессе термолиза сохраняют свое надмолекулярное строение, копирующее исходное образование. Таким образом, стеклоуглерод, как отмечается в работе [123] представляет собой достаточно плотный конгломерат полиэдрических глобул 20-40 нм в поперечнике со сферической внутренней полостью. При этом поверхностный слой образцов представляет собой высокоориентированную слоистую пленку толщиной 15—25 нм. Эта пленка, являясь подобием реплики, изучаемой при электронно-микроскопических исследованиях, определила, очевидно, модель Дженкинса [124], который представляет структуру стеклоуглерода в виде беспорядочно переплетенных углеродных лент, состоящих из мйкрокристаллитов, между которыми расположены игольчатой формы поры (рис. 83). Подобная форма пор обусловлена лентообразностью сильно искаженных слоев, образующих ленточно-сетчатую структуру фрагментов стеклоуглерода. Такая структура стеклоуглерода, термообработанного при 500 °С, сохраняется и после его обработки при 2700 °С, когда уже можно наблюдать участки с идеальной упорядоченностью графитовых сеток [124]  [c.209]

    Галлуазит обладает своеобразным трубчатым строением, хорошо различимым электронномикроскопически. Однако структура его образована теми же слоистыми плоскостями. Сворачивание их в трубку объясняется беспорядочными смеш епиями слоев и их искривлениями из-за разной длины периодов кислородных и гидроксильных слоев и интенсивной гидратации [c.22]

    Строение гелей окончательно еще не установлено. Одна из наиболее распространенных гипотез исходит из представления о сильной сольватации, т.е. способности внутренней фазы (в нашем примере—желатины) сильно гидратироваться или ассоциировать с внешней фазой. Некоторые гели образуются в результате набухания. Например, пластинчатые глины типа монтмориллонита при добавлении воды могут разбухать в сотни раз по сравнению с первоначальным объемом. Поверхность такой глины хорошо смачивается водой и способна удерживать на себе ориентированные слои воды толщиной в несколько молекул. Вследствие этого пластинчатые кристаллы этой глины расщепляются и образуют хаотическую структуру, подобную груде щеток и содержащую множество беспорядочных лабиринтов или капилляров, наполненных водой. Описанные примеры позволяют понять способность многих лиофильных коллоидов удерживать большие количества жидкости, сохраняя при этом полужесткую структуру. [c.501]


Смотреть страницы где упоминается термин Строение беспорядочное: [c.10]    [c.95]    [c.114]    [c.38]    [c.361]    [c.170]    [c.108]    [c.252]    [c.78]    [c.231]    [c.38]    [c.172]    [c.253]   
Физико-химический анализ гомогенных и гетерогенных систем (1978) -- [ c.10 ]




ПОИСК







© 2024 chem21.info Реклама на сайте