Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен реакция горения

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    Получение ацетилена и демонстрация его горения. Изучение свойств ацетилена безопасно проводить в приборе, показанном на рисунке 32. Выделяющийся в первой колбе (от реакции карбида кальция с водой) ацетилен барботирует через бромную воду и раствор марганцовокислого калия. После обесцвечивания растворов ацетилен поджигают. Так как горение ацетилена происходит с большим выделением копоти, то рекомендуется опыт проводить быстро, используя лишь неболь- [c.61]

    При определении оптимального времени контакта и условий закалки очень важно установить, где образуется ацетилен — в зоне горения или за пламенем. Этот вопрос важен с технологической точки зрения, так как определяет время реакции, зависящее в этом случае не только от времени контакта (о бъем реактора расход), но и от формы и размеров пламени. Определение зоны, в которой происходит конверсия в ацетилен, определяет конструкционные характеристики горелки, гидродинамические характеристики потока газов (ламинарный или турбулентный), место ввода охлаждающей воды для замораживания равновесия и т. д. [c.112]

    Ацетилен — весьма ценное соединение. Его горение в кислороде является очень экзотермичной реакцией  [c.594]

    Дискуссия об ацетилене, который, по мнению Андерсона [17], является промежуточным продуктом в реакции горения углеводородов. Рассмотрен как пиролитический, так и окислительный аспекты процесса образования и горения ацетилена. [c.267]

    Известны многочисленные взрывы, вызванные взаимодействием хлора с ацетиленом. Реакция взаимодействия ацетилена с хлором может инициировать взрывной распад ацетилена, что способствует развитию аварии. Для горючих смесей с хлором характерны низкие температуры самовоспламенения. Это увеличивает опасность инициирования горения при образовании взрывоопасных смесей. [c.349]

    При сопоставлении взрывчатых свойств ацетилена баллонного и очищенного было обнаружено (табл. 1), что очищенный ацетилен имеет несколько отличные свойства. При этом реакция горения более чистого ацетилена с воздухом отличается большой поджигающей способностью. [c.186]

    Окислительный пиролиз углеводородов, когда в едином реакционном объеме одновременно протекают экзотермические реакции горения углеводорода и эндотермические процессы его крекинга в ацетилен. При недостатке кислорода и высокой температуре сгорание метана происходит в основном по реакции  [c.103]

    Реакторы для производства ацетилена путем парциального окисления метана кислородом. Ацетилен образуется из метана в результате эндотермической реакции с одновременным разложением метана. Процесс получения ацетилена должен быть скоротечен, в противном случае может начаться реакция горения ацетилена, поэтому его проводят в реакторах горелочного типа. Углеводороды, смешанные с кислородом, проходят с большой скоростью через горелки определенных размеров и зажигаются в камере сгорания. Часть метана, сгорая со всем введенным кислородом, дает значительное количество теплоты, необходимой для быстрого повышения температуры оставшихся углеводородов до 1300... 1500°С, при которой степень превращения будет оптимальной. Затем с помощью орошения холодной водой создается, так называемое, замороженное равновесие, благодаря чему достигается требуемая производительность. [c.621]


    В указанном процессе ацетилен образуется в зоне горения по реакции [c.60]

    В горючих системах обычно различают горючее и окислитель. Возможны также процессы горения, в которых участвует только одно исходное вещество, способное к взрывному распаду, например озон, ацетилен, взрывчатые вещества и пороха. Такое соединение всегда бывает эндотермическим, горение происходит за счет теплового эффекта реакции его разложения или внутреннего самоокисления сложной молекулы (у взрывчатых веществ). [c.5]

    Разумеется, основным эффектом реакций окисления является выделение энергии (главным образом в виде тепла). Этот процесс часто сопровождается изменением давления в объеме горения, так как с повышением температуры происходит расширение объемов газообразных продуктов горения, а поскольку процесс горения весьма скоротечен, то изменения давления могут привести к взрыву. Действительно, реакции окисления таких газов, как водород и ацетилен, имеющих высокую скорость распространения пламени, часто приобретают взрывной характер. Следствие этого — повреждения и даже разрушения газоиспользующего оборудования и емкостей. Чрезмерное повышение температуры горения может привести к оплавлению горелок, огнеупорных материалов и теплопередающих поверхностей. [c.99]

    Рассмотрим эти два принципа на самом простом примере — конструкции газовой горелки для сварки или резки металлов (рис. 77). Кислород и ацетилен подаются к месту горения по тонким трубам из хорошо проводящего тепло металла (медь). Благодаря их малым диаметрам создайся большая удельная поверхность стенки, которая являете местом исчезновения активных центров, что необходимо для того, чтобы не пропустить развитие цепной реакции внутрь прибора ( проскок ). [c.126]

    Так как при температурах выше 1000 С эти реакции целиком сдвинуты вправо, в равновесной смеси газов не могут одновременно присутствовать ацетилен и углекислота или водяной пар. Поэтому ацетилен, получающийся в определенных условиях при неполном горении метана в кислороде и воздухе, наряду с углекислотой и водяным паром, как и ацетилен, получающийся при термическом процессе, является промежуточным неустойчивым продуктом и его получение возможно только нри быстрой закалке продуктов реакции. [c.115]

    Прямым контактом между газами горения с температурой 2300° К и нагретым пропаном можно достигнуть превращения в ацетилен до 20 — 45 %, если время реакции составляет доли секунды и если газы реакции резко охладить до температуры ниже 550° С. Продукты пиролиза представляют смесь водорода, этилена, ацетилена, метана, окиси углерода, а также гомологов углеводородов пропилена, метилацетилена, диацетилена, винилацетилена [c.50]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    Ацетилен характеризуется высокими энергетическими показателями (см. табл. 4.1). Он легко вступает в реакцию с кислородом воздуха, выделяя при сгорании смеси стехиометрического-состава 105,2 кДж. Тепловой эффект горения ацетилено-воз-душных смесей меньше, чем тепловой эффект реакции распада чистого ацетилена, составляюший 227,1 кДж/моль. Таким образом, в противоположность большинству топлив при обога-шении ацетилепо-воздушной смеси ее тепловой эффект возрастает. Тем не менее максимальная скорость реакции, минимальная энергия зажигания и другие экстремальные параметры горения соответствуют стехиометрическому составу ацетиленовоздушной смеси. [c.191]

    Кислород-третий по использованию в промышленности химикат, уступающий только серной кислоте и негашеной извести СаО. Ежегодный расход этого элемента достигает 14 млрд. кг. Он широко используется в качестве окислителя. Приблизительно половина производимого кислорода расходуется в сталеплавильной промышленности, главным образом для удаления примесей из стали (см. разд. 22.6). Кислород применяется в медицине с целью ускорения процессов окисления, необходимых для поддержания жизни. Он используется совместно с ацетиленом С2Н2 для кислородноацетиленовой сварки. Последнее применение основано на высокой экзотермичности реакции между С Н и Oj, при которой развиваются температуры, превышающие 3000°С. Реакция горения кислородно-ацетиленовой смеси описывается уравнением [c.304]


    Процесс сжигания примесей в газовых потоках проводят на факеле или в камерах. Сжигание на факеле применяют, когда теплота реакции горения превышает 1,9 МДж/м . Однако при этом возникает ряд проблем, одна из которых состоит в выделении значительного количества копоти из-за низкого содержания углерода в смеси углерод — водород. Во избежание этого в систему горения добавляют воздух и водяной пар. Гесс и Штикель [10] на примере ацетилена экспериментально определили минимально необходимые количества пара и воздуха, а также пределы цветности пламени, его стабильности и уровня шума. По результатам экспериментов построен график (рис. 2.6) зависимости массового расхода пара от объемного расхода смеси воздух — ацетилен для различных значений функции Ф  [c.87]

    Hermann и Baum окисляли нефтяные масла, зажигая водородо-кислородное пламя (или пламя других горючих газов) под поверхностью жидкости. Когда температура жидкости вблизи пламени становится достаточно высокой для того, чтобьг горение продолжалось с одним кислородом, ток водорода прерывают. Во время крекинга нефтяного масла теплом, выделяемым пламенем, наряду с другими жидкими и газообразным И продукта.ми образуются этилен и ацетилен. Реакция может быть ускорена растворением или суспендированием в жидкости катализирующих вещеста или при использовании таких веществ в конструкции горелки. Этот способ применим и для разложения других органических жидкостей, например спиртов. [c.912]

    От контакта с бромом, хлором и фтором aц6tйЛeн самовозгорается, что можно продемонстрировать следующим опытом. Возьмем цилиндр, заполненный хлором, и осторожно внесем в него стеклянную трубку, по которой поступает ацетилен. Как только трубка окажется в атмосфере хлора, ацетилен, выходящий из нее, загорается. Образуется сильно коптящее пламя. Реакцию горения ацетилена в хлоре можно представить уравнением  [c.168]

    Процесс окисления ацетилена легко приобретает характер детонации. Прп этом по непрореагировавшему газу движется ударная волна, за фронтом которой реакция горения быстро достигает термодинамического равновесия. Модели профиля детонационной волны, рассмотренные в гл. VI в связи со взрывным разложением чистого ацетилена, применимы и для детонации при окислении ацетилена, как и для других газовых реакций. Скорость распространенпя детонационной волны определяется законами термодпнамнки и газодинамики, а не кинетикой реакции горения. Теория стационарной детонации в газах изложена в ряде монографий (см., например [1],) и выходит за рамки настоящей книги, которая посвяш ена главным образом ацетилену. [c.560]

    Опыты проводили в нагретых трубках при различных режимах потока. Было обнаружено, что при ламинарном течении пе-воспламеняюш ейся смеси ацетилен совершенно не образуется. При турбулентном или при таком ламинарном потоке, в которою вызвана местная турбулизация у стенок, в продуктах горения появляется ацетилен. При этом содержание ацетилена суш е-ственно зависит от степени турбулентности потока. Это, по-видимому, объясняется тем, что горячие продукты гореш1Я на стенках вызывают реакцию горения в объеме, идуш,ую с образованием-ацетилена, только при быстром турбулентном перемешивании,. При ламинарном потоке наблюдается медленная молекулярная диффузия продуктов поверхностного горения па стенке, при которой реакция распространяется от стенок в глубь потока относительно медленно. При этом происходит окисленпе метана в СО, СО2 и Н2О и ацетилен не образуется. В связи с этими пока еще качественными наблюдениями представляют интерес результаты, полученные при осуществлении процесса неполного горения метана с циркуляцией горячих продуктов горения в печп типа тоннельной горелки. [c.14]

    В присутствии кислорода при температурах термоокислитёль-ного пиролиза метана (1500—1600° С) ацетилен Не может оставаться инертным. Перегиб на кривой накопления, соответствующий концу кислородной зоны, обусловлен прекращением реакции горения ацетилена. Вероятно, в механизме горения ацетилена (стр. 243) реакцию регенерации водородных атомов [c.245]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    В обычных условиях горение представляет собой процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением тепла и света. Однако известно, что некоторые вещества, папример сжатый ацетилен, хлористый азот, озон, взрывчатые вещества, могут взрываться и без кислорода воздуха с образованием тепла и пламени. Следовательно, горение может явиться результато.м не только реакции соединения, но и разложения. Известно также, что водород и многие металлы могут гореть в атмосфере хлора, медь — в парах серы, магний — в диоксиде углерода и т. д. [c.119]

    Ацетилен — газ, в чистом виде имеющий сладкий запах, плохо растворим в воде и очень хорошо в ацетоне, особенно под давлением (в ацетиленовых баллонах). При горении ацетилен дает высокотемпературное пламя, отсюда следует использование его в кислородно-ацетиленовых фонарях. Несмотря на токсичность, в прошлом ацетилен применяли в качестве анестезирующего средства (нарцилен). Высшие алкины являются газами, жидкостями или твердыми веществами, нерастворимыми в воде и имеющими нейтральную реакцию. [c.45]

    Суть этого опыта в том, что при реакции СаСд с водой (взятой в виде снега) выделяется ацетилен. Именно ацетилен горит коптящим пламенем, создавая иллюзию горения снега. [c.359]

    В б,дизкой связи с окислительным пиролизом стоит по.лучение водорода частичным окислением углеводородных газов, на котором мы здесь останавливаться не будем. В соответствии с режимом горения окислительный пиролиз можно разделить на две группы. ]Зо-первых, горение на насадке и.ли без нее (главным образом для получения этилена из этана и пропана), во-вторых, высокоскоростное турбулентное и детонационное сгорание с высокой температурой и с малой длиной зоны реакции (главным образом при переработке метана на ацетилен или сажу). [c.54]

    Другой метод окислительного пиролиза с получепием ацетилена и санга основал на использовапяп ])еакции, протекающей при высокоскоростном турбулентном горении, п детонации смесей метана с кислородом в специальных установках. При. этом в определенных стабильных условиях в эффективно работающей аппаратуре получаются соответственно ацетилен и сажа. Вполне понятной, в связи со значением условий теплообмена для протекания реакций крекинга при высоких температурах, является важная роль гидродинамики горения при подобных процессах, требующая еще дополнительного изучения. Экономика процесса может быть улучп1ена п )и химическом использовании получающихся, наряду с основными иродуктамп, водорода и окиси углерода. [c.55]


Смотреть страницы где упоминается термин Ацетилен реакция горения: [c.268]    [c.267]    [c.48]    [c.80]    [c.14]    [c.232]    [c.129]    [c.266]    [c.155]    [c.311]    [c.494]    [c.69]    [c.84]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.237 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен горение



© 2025 chem21.info Реклама на сайте