Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен горение

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    Получение ацетилена и демонстрация его горения. Изучение свойств ацетилена безопасно проводить в приборе, показанном на рисунке 32. Выделяющийся в первой колбе (от реакции карбида кальция с водой) ацетилен барботирует через бромную воду и раствор марганцовокислого калия. После обесцвечивания растворов ацетилен поджигают. Так как горение ацетилена происходит с большим выделением копоти, то рекомендуется опыт проводить быстро, используя лишь неболь- [c.61]

    Алкины образуют еще один ряд ненасыщенных углеводородов. В молекулах этих соединений имеется одна или несколько тройных углерод-углеродных связей. Простые алкины имеют общую эмпирическую формулу С Н2 2- Простейший представитель ряда алкинов, ацетилен, обладает высокой реакционной способностью. При горении ацетилена в токе кислорода в так называемой кислородно-ацетиленовой горелке образуется пламя с очень высокой температурой, приблизительно 3200 К (см. разд. 21.4). Кислородно-ацетиленовые горелки широко используются при сварке, где требуются высокие температуры. Алкины вообще очень реакционноспособные вещества. Вследствие этого они не столь широко распространены в природе, как алкены, однако являются важными промежуточными продуктами во многих промышленных процессах. [c.416]

    Развивающейся при горении ацетилена в смеси с кислородом высокой температурой (около 3000 °С) пользуются для автогенной сварки и резки металлов. На воздухе ацетилен горит белым пламенем, сильно коптящим вследствие неполного сгорания углерода.  [c.498]

    При определении оптимального времени контакта и условий закалки очень важно установить, где образуется ацетилен — в зоне горения или за пламенем. Этот вопрос важен с технологической точки зрения, так как определяет время реакции, зависящее в этом случае не только от времени контакта (о бъем реактора расход), но и от формы и размеров пламени. Определение зоны, в которой происходит конверсия в ацетилен, определяет конструкционные характеристики горелки, гидродинамические характеристики потока газов (ламинарный или турбулентный), место ввода охлаждающей воды для замораживания равновесия и т. д. [c.112]

    Этин, ацетилен ( H = GH), — это бесцветный газ, в чистом виде без запаха, технический — с неприятным запахом. В отличие от этана и этена этин немного растворим в воде и хорошо растворяется в ацетоне. Так как сам ацетилен при сжатии взрывается, а его раствор в ацетоне — нет, то транспортировка проводится в стальных баллонах, содержащих пористый материал, пропитанный упомянутым раствором. С воздухом ацетилен образует взрывчатую смесь. Чистый ацетилен горит желтым коптящим пламенем, потому что при горении высвобождается большое количество сажи из-за высокого процентного содержания углерода в молекулах ацетилена. В промышленности ацетилен получают гидролизом дикарбида кальция (СаСг), полученного сплавлением кокса с оксидом кальция, либо частичным окислением или гидролизом метана или низших алканов. Часть произведенного ацетилена (около 10%) расходуется (в смеси с кислородом) на сварочные работы (температура пламени горелки достигает 3000 °С), остальное используется для получения хлорированных углеводородов, акриловой кислоты и ее производ- [c.250]


    Применение. Более половины получаемого кислорода расходуется в черной металлургии для интенсификации выплавки,. чугуна и стали. В смеси с ацетиленом С2Н2 кислород используют для сварки и резки металлов, при горении этой смеси пламя имеет [c.442]

    А карбид кальция — вещество, открытое случайно при испытании новой конструкции печи Несколько лет назад карбид кальция СаСг использовали главным образом для автогенной сварки и резки металлов. При взаимодействии карбида с водой образуется ацетилен. Горение ацетилена в струе кислорода позволяет получать температуру почти 3000° С. В последнее время ацетилен, а следовательно, и карбид, все меньше расходуются для сварки и все больше — в химической промышленности. [c.306]

    Образующиеся при неполном сгорании jHj твердые частички углерода, сильно накаливаясь, обусловливают яркое свечение пламени, что делает возможным использование ацетилена для освещения. Применением специальных горелок с усиленным притоком воздуха удается добиться одновременно сочетания яркого свечения И отсутствия копоти сильно накаливающиЬся во внутренней зоне пламени частички углерода затем сполна сгорают во внешней зоне. Газы, не образующие при сгорании твердых частиц (например, Hj), в противоположность ацетилену дают почти несветящее пламя. Так как в пламени обычно применяемых горючих веществ (соединений С с Н и отчасти О) твердые частички могут образоваться за счет неполного сгорания только углерода, пламя газов и паров жидкостей бывает при одних и тех же условиях тем более коптящим, чем больше относительное содержание в молекулах горящего вещества углерода и меньше кислорода й водорода. Например, спирт (С2Н5ОН) горит некоптящим пламенем, а скипидар (СюНц) — Сильно коптящим. Яркость пламени зависит и от степени накаливания этих твердых частиц, т. е. от развивающейся при горении температуры. [c.535]

    Уг (рис. 53) дикарбид кальция (тв, 3 гранулы, в пробирке) + вода (5 мл), быстро закрыть пробирку пробкой с газоотводной трубкой -н х (20 с, для вытеснения воздуха из реакционного объема при выделении ацетилена) газ + кислород воздуха (поджечь выделяющийся из трубки ацетилен) горение - t (внести в пламя холодный фарфоровый тигель) углерод (внимание ввиду высокой температуры ацетиленового пламени опыт следует проводить быстро, во избежание заплавления отверстия газоотводной трубки ). [c.173]

    Разумеется, основным эффектом реакций окисления является выделение энергии (главным образом в виде тепла). Этот процесс часто сопровождается изменением давления в объеме горения, так как с повышением температуры происходит расширение объемов газообразных продуктов горения, а поскольку процесс горения весьма скоротечен, то изменения давления могут привести к взрыву. Действительно, реакции окисления таких газов, как водород и ацетилен, имеющих высокую скорость распространения пламени, часто приобретают взрывной характер. Следствие этого — повреждения и даже разрушения газоиспользующего оборудования и емкостей. Чрезмерное повышение температуры горения может привести к оплавлению горелок, огнеупорных материалов и теплопередающих поверхностей. [c.99]

    Однако стабильное пламя можно сохранить и при большой интенсивности работы горелки (турбулентное движение потока горючей смеси). В этих целях могут быть использованы различные технические приемы (рис. П-И, д — к). Так, при не аэродинамической форме горелки значительно тормозится поток (рис. П-11, д), вследствие чего образуется зона спокойного горения смеси с размещением пламенп по ее краям (обратный конус). Другой, более часто используемый прием — созданпе стабильного пламени во вторичном потоке у края горелки (рис. П-11, е) или в ее центре (рис. П-11, ж). Применяют его, например, при установлении метанокислородного пламени в реакторе для парциального окисления метана в ацетилен. В этом случае параллельно с метано-кислородной смесью, поступающей по осп горелки, подается кислород — скорость горения увеличивается, а скорость потока в зоне пламени становится умеренной. Возможно также введение кислорода перпендикулярно оси горелки с образованием диффузионного пилотного пламени, являющегося стабилизатором. [c.88]

    Горение большинства веществ прекращается при снижении содержания кислорода в окружающей среде (азоте) до 12—16% [284] (или 11,0—13,5% [285]), а этилена и бутадиена — 10,0— 10,4% [286]. Исключение составляют вещества, обладающие широкой областью воспламенения, — водород, ацетилен, оксид углерода для них эта величина не превышает 5%, но в газах битумного производства они не присутствуют или присутствуют. практически в незначительных количествах. При хранении битумов в резервуарах пожаробезопасное содержание кислорода зависит от природы инертного газа (азота, водяного пара, диоксида углерода), т. е. флегматизатора, и составляет от 10 до 15% [209]. Эффективность действия,флегматизатора зависит от его свойств и пропорциональна отнощению теплоемкости к теплопроводности [287]. [c.176]


    Ацетилен — весьма ценное соединение. Его горение в кислороде является очень экзотермичной реакцией  [c.594]

    При измерении содержания ацетилена по длине поперечного сечения пламени на экспериментальной установке было показано, что ацетилен образуется очень быстро и в узкой зоне. В дальнейшем пытались установить соотношение между изменением этого содержания по длине пламени (включая зоны воспламенения, собственно горения и окончания горени/1), диаметром газовых потоков, характером (ламинарным или турбулентным) потока и, естественно, соотношением кислорода и углеводородов. [c.112]

    В обычных условиях горение представляет собой процесс окисления или соединения горючего вещества и кислорода воздуха, сопровождающийся выделением тепла и света. Однако известно, что некоторые вещества, папример сжатый ацетилен, хлористый азот, озон, взрывчатые вещества, могут взрываться и без кислорода воздуха с образованием тепла и пламени. Следовательно, горение может явиться результато.м не только реакции соединения, но и разложения. Известно также, что водород и многие металлы могут гореть в атмосфере хлора, медь — в парах серы, магний — в диоксиде углерода и т. д. [c.119]

    В школьной практике взрывы бывают вызваны чаще всего горением смесей газов или паров горючих и легковоспламеняющихся веществ с воздухом. Чем ниже температура вспышки паров, тем больше опасность взрыва веществ, имеющих очень низкую температуру кипения, как метан, этилен, ацетилен, водород и др. Можно грубо считать, что относительная опасность взрыва обратно пропорциональна величине температуры самовоспламенения. [c.53]

    Кислород-третий по использованию в промышленности химикат, уступающий только серной кислоте и негашеной извести СаО. Ежегодный расход этого элемента достигает 14 млрд. кг. Он широко используется в качестве окислителя. Приблизительно половина производимого кислорода расходуется в сталеплавильной промышленности, главным образом для удаления примесей из стали (см. разд. 22.6). Кислород применяется в медицине с целью ускорения процессов окисления, необходимых для поддержания жизни. Он используется совместно с ацетиленом С2Н2 для кислородноацетиленовой сварки. Последнее применение основано на высокой экзотермичности реакции между С Н и Oj, при которой развиваются температуры, превышающие 3000°С. Реакция горения кислородно-ацетиленовой смеси описывается уравнением [c.304]

    При горении в воздухе концентрация кислорода должна быть не ниже 14—18% (об.), и только некоторые вещества (ацетилен, этилен, водород, сероуглерод и др.) могут гореть при содержании кислорода до 10% (об.). [c.180]

    В горючих системах обычно различают горючее и окислитель. Возможны также процессы горения, в которых участвует только одно исходное вещество, способное к взрывному распаду, например озон, ацетилен, взрывчатые вещества и пороха. Такое соединение всегда бывает эндотермическим, горение происходит за счет теплового эффекта реакции его разложения или внутреннего самоокисления сложной молекулы (у взрывчатых веществ). [c.5]

    Существует [55] спектральное подтверждение того, что около светящейся восстановительной зоны плоского пламени при горении этилена в кислороде имеется ацетилен. [c.473]

    Ацетилен и углерод, так ке образующиеся в результате пиролиза, могут реагировать с продуктами горения  [c.113]

    Ацетилен и воздух для горения подают из баллонов через редукторы 14 и вентили точной регулировки 3. Количество поступающих ацетилена и воздуха поддерживают постоянным во время измерений и выбирают таким, чтобы обеспечить полное сгорание ацетилена. Высота пламени должна быть приблизительно 25—30 см. С помощью диафрагмы 9 из пламени выделяют участок, расположенный на 2—3 см выше его зеленого конуса, где горение наиболее стабильно. Контроль подачи ацетилена и воздуха осуществляют реометрами 12. [c.108]

    В указанном процессе ацетилен образуется в зоне горения по реакции [c.60]

    Так как при температурах выше 1000 С эти реакции целиком сдвинуты вправо, в равновесной смеси газов не могут одновременно присутствовать ацетилен и углекислота или водяной пар. Поэтому ацетилен, получающийся в определенных условиях при неполном горении метана в кислороде и воздухе, наряду с углекислотой и водяным паром, как и ацетилен, получающийся при термическом процессе, является промежуточным неустойчивым продуктом и его получение возможно только нри быстрой закалке продуктов реакции. [c.115]

    Известны многочисленные взрывы, вызванные взаимодействием хлора с ацетиленом. Реакция взаимодействия ацетилена с хлором может инициировать взрывной распад ацетилена, что способствует развитию аварии. Для горючих смесей с хлором характерны низкие температуры самовоспламенения. Это увеличивает опасность инициирования горения при образовании взрывооласных смесей. [c.349]

    Некоторые авторы считают, что и при термическом разложении и при неполном горении образование ацетилена идет через этан, который, теряя водород, превращается сначала в этилен, а затем в ацетилен. Этан образуется при взаимодействии метиленового радикала (СНа), который является первичным продуктом термического разложения метаиа. [c.116]

    Пламена углеводородов обладают некоторой электропроводностью. Характерна повышенная ионизация в зоне горения пламен, электропроводность падает при переходе к высоким зонам. Измеренная концентрация электронов для пламени ацетилен-воздух составляет 10 ° см для смеси ацетилен—динитрооксид 10 —10 атм. На эти данные опираются при расчете степени ионизации элементов в пламенах. На рис. 3.25 показано изменение степени ионизации атомов элементов II группы в зависимости от температуры. [c.62]

    К настоящему времени известно небольшое число экспериментальных исследований работы поршневых двигателей внутреннего сгорания на ацетилене, которые выполнены преимущественно на одноцилиндровых установках FR. Особенностью ацетилена является высокая склонность к детонации, исключающая возможность работы двигателя на богатых и стехиометрических смесях. Вместе с тем широкие концентрационные пределы воспламенения и горения ацетилено-воздушных смесей позволяют организовать работу двигателя при пониженных степенях сжатия за счет ультраобеднения топливной смеси. Согласно экспериментальным данным, в диапазоне е = = 4—6 стабильная работа установки FR обеспечивается прн а=1,45—2,4, причем с повышением степени сжатия граница бездетонационной работы двигателя смещается в бедную область. В этом случае потери мощности по сравнению с работой на бензине составляют около 30% нри снижении индикаторного к. п. д. на 10—12% [179]. [c.191]

    Рассмотрим эти два принципа на самом простом примере — конструкции газовой горелки для сварки или резки металлов (рис. 77). Кислород и ацетилен подаются к месту горения по тонким трубам из хорошо проводящего тепло металла (медь). Благодаря их малым диаметрам создайся большая удельная поверхность стенки, которая являете местом исчезновения активных центров, что необходимо для того, чтобы не пропустить развитие цепной реакции внутрь прибора ( проскок ). [c.126]

    Ацетилен характеризуется высокими энергетическими показателями (см. табл. 4.1). Он легко вступает в реакцию с кислородом воздуха, выделяя при сгорании смеси стехиометрического-состава 105,2 кДж. Тепловой эффект горения ацетилено-воз-душных смесей меньше, чем тепловой эффект реакции распада чистого ацетилена, составляюший 227,1 кДж/моль. Таким образом, в противоположность большинству топлив при обога-шении ацетилепо-воздушной смеси ее тепловой эффект возрастает. Тем не менее максимальная скорость реакции, минимальная энергия зажигания и другие экстремальные параметры горения соответствуют стехиометрическому составу ацетиленовоздушной смеси. [c.191]

    Являясь экзотермическим соединением, ацетилен в опеределен-ных условиях способен к взрывному разложению в отсутствие кислорода или других окислителей. При этом выделяется энергия (8,7 МДж/кг), которой достаточно, чтобы разогреть продукты реакции до 2800 °С. Ацетилен способен к самопроизвольному разложению при горении, взрыве, детонации и каскадном разложении. Конечное давление газов зависит от характера разложения. При взрыве скорость распространения пламени достигает нескольких метров в секунду, а конечное давление, являясь функцией развиваемой температуры, возрастает по сравнению с начальным в 8—12 раз. Давление детонационной волны до ее отражения от стенки (а также от торца, изгиба и т. д.) может увеличиться в 30 раз, а в отражаемой волне в 50-—100 раз. [c.20]

    Реактор с предварительным перемешиванием газа. Этот реактор изготовляют из огнеупорной керамики или термостойкой сталп. Он состоит КЗ смесителя, диффузора и камеры сгорания. Объем камеры сгорания (реакционной камеры) зависит от скорости горения газов, температуры и т. д. Камера сгорания большинства реакторов сделана из огнеупорных материалов. Этот тип реактора используют при парциальном окислении углеводородов в ацетилен или в спнтез-газ п т. д. [c.353]

    Очевидно, что взрывобезопасность индивидуального ацетилена можно обеспечивать только на основе второго и третьего принципов. Взрывоопасность ацетилена значительно возрастает по мере повышения давления. Наиболее опасны процессы компримирования ацетилена и заполнения им баллонов. В некоторых случаях оборудование, предназначенное для работы с ацетиленом высокого давления, изготовляется особо прочным, рассчитанным на давление недетонационного сгорания. Ввиду возможности возникновения детонации, а также роста давления сверх адиабатического и яри недетонационном горении такая система не гарантирует сохранности оборудования. Его безопасность следует обеспечивать тщательным контролем за невозможностью возникновения поджигающих импульсов. [c.87]

    Ацетилен — газ, в чистом виде имеющий сладкий запах, плохо растворим в воде и очень хорошо в ацетоне, особенно под давлением (в ацетиленовых баллонах). При горении ацетилен дает высокотемпературное пламя, отсюда следует использование его в кислородно-ацетиленовых фонарях. Несмотря на токсичность, в прошлом ацетилен применяли в качестве анестезирующего средства (нарцилен). Высшие алкины являются газами, жидкостями или твердыми веществами, нерастворимыми в воде и имеющими нейтральную реакцию. [c.45]

    Кроме указанных областей применения ацетилен широко ис1юльзуется при автогенной сварке металлов, так как горение ацетилена в смеси с кислородом дает температуру выше ЗОООХ. Ацетилен находит широкое применение в качестве исходного сырья для многочисленных синтезов, из которых наиболее важное значение имеют производства синтетического каучука, пластических масс, этилового спирта, уксусной кислоты и др. [c.142]

    Важный параметр, характеризующий способность различных газов к быстрому нагреву, — объемная напряженность горения, которая определяется как произведение теплоты сгорания топливокислородной смеси и скорости горения. При стехиометрической газовоздушной смеси объемная напряженность горения [в (кДж/м ) (см/с)] водорода равна 840 165, ацетилена — 644 683, природного газа — 141 848, пропана— 169 439, бутана— 183 758, городского газа — 352 794. Из приведенных данных видно, что ацетилен является прекрасным топливом для осуществления газовой сварки. При использовании пропана скорость нагрева можно повысить за счет добавки ускоряющих компонентов (пропадиена, изопропилэфира, метилацетилена или окиси пропилена). Для высокоскоростной огневой резки применяют специальные газовые смеси, которые при прочих равных условиях делают кислородно-пропановую сварку конкурентоспособной с кислородно-ацетиленовой и даже электрической сваркой. [c.323]

    Гесс и Штикель [364] теоретически и экспериментально изучали факельное горение ацетилена, определяли предельные значения минимально нобходимого количества пара и воздуха, пределы цветности пламени, его стабильность и уровни шума. В результате этих экспериментов был построен график зависимости объемного соотношения воздух — ацетилен от массы пара для различных значений функции Ф, записываемой в виде [c.183]

    Примепеине. Более половины получаемого кислорода расходуете в черной металлургии для интенсификации процессов выплавки чугуна и стали. В смеси с ацетиленом кислород используют для сварки и резки металлоа, при горении этой смеси развивается температура я 3200 С. Пламя горящего в кислороде природного газа применяют при плавлении кварца и других тугоплавких веществ. В горелках для стеклодувных работ используют воздух с добавкой кислорода. Жидкий кислород применяют как окислитель в ракетных ТОПЛИВАХ. [c.436]

    В каких объемных отношениях взаимодействуют ацетилен С2Н2 и кислород при горении ацетилена  [c.23]


Смотреть страницы где упоминается термин Ацетилен горение: [c.17]    [c.113]    [c.104]    [c.150]    [c.151]    [c.232]    [c.220]    [c.116]    [c.51]   
Общая органическая химия Т.1 (1981) -- [ c.96 ]

Основы органической химии (1968) -- [ c.199 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.242 ]

Основы органической химии Часть 1 (1968) -- [ c.199 ]

Лекционные опыты по общей химии (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен реакция горения

Горение ацетилена Нестационарное Каскадное разложение

Горение ацетилена в воздухе

Горение ацетилена в горелке

Горение в хлоре ацетилена

Горение метана, этилена и ацетилена в цилиндрах

Нормальная скорость горения ацетилена

Опыт 18. Получение ацетилена и его горение

Пламена, образующиеся при горении ацетилена в галогенах

Полимеризация и горение ацетилена

Получение ацетилена и его горение



© 2025 chem21.info Реклама на сайте