Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервная система роль веществ

    Нервные клетки, или нейроны, принимают, проводят и передают электрические сигналы. Значение этих сигналов различно и зависит от того, какую роль играет данная клетка в функционировании нервной системы в целом (рис. 18-1). В мотонейронах (двигательных нейронах) сигналы служат командами для сокращения определенных мышц. В сенсорных (чувствительных) нейронах сигналы передают информацию о раздражителях определенного типа, таких как свет, механическая сила или химическое вещество, воздействующих на тот или иной участок тела. Сигналы интернейронов (вставочных нейронов) представляют собой результаты совместной переработки сенсорной информации из нескольких различных источников, приводящей к формированию адекватных двигательных команд. Но, несмотря на различные значения [c.71]


    ХОЛЕСТЕРИН С2,Н4( 0—одноатомный полициклический спирт, из группы стери-пов, пластинки с перламутровым блеском, жирные на ощупь, т. пл. 149 С нерастворим в воде, малорастворим в органических растворителях. В свободном состоянии и в виде сложных эфиров содержится в животных организмах. Особенно много X. в тканях нервной системы, кожном жире, желче, а больше всего в мозге, печени, почках. Из пищевых продуктов X. больше всего в животных жирах, желтках яиц и др. Многие вещества, играющие важную роль в организме,— производные X. (витамины, половые гормоны и др.). Нарушение обмена X. в организме вызывает ряд заболеваний (атеросклероз, холецистит и др.). X. впервые выделен из желчного камня, почти целиком состоящего из X. Нормальное содержание X. в крови человека составляет 160—200 мг в 100 мл. X. получают из спинного мозга животных, из жира, получаемого при промывке овечьей шерсти (ланолина) и др. [c.279]

    В принципе любое соединение, которое содержит одновременно и кислотную функциональную группу, и аминогруппу, является аминокислотой. Однако чаще всего этот термин применяется для обозначения карбоновых кислот, аминогруппа которых находится в а-положении по отношению к карбоксильной группе. Ни один из известных нам живых организмов не обходится без аминокислот. Аминокислоты, как правило, входят в состав полимеров — белков. Белки служат питательными веществами, регулируют обмен веществ, способствуют поглощению кислорода, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения и главным опорным материалом живых организмов, участвуют в передаче генетической информации и т. д. [c.382]

    Вещества, подобные половым аттрактантам насекомых, играют определенную роль и у других классов животных, даже в жизни млекопитающих. Здесь их значение для управления поведением особи внутри вида еще недостаточно выяснено. Конечно, в физиологии высоко организованных животных многие функции аттрактантов перешли к нервной системе. Но, например, установлено, что смесь веществ с преобладанием гептанона-2 1.102 участвует в привлечении полов у мышей. [c.39]

    Многие эукариотические клетки, в частности длинные клетки нервной системы животных, содержат микротрубочки дяш тром около 25 нм (рис. 2-16). Каждая микротрубочка состоит из 13 плотно упакованных нитей белковых молекул, расположенных вокруг полой сердцевины. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам клеточных отростков-аксонов. Микротрубочки выполняют много функций. Например, при их участии осуществляется работа митотического веретена во время деления клеток они играют также роль двигательных элементов в ворсинках и жгутиках эукариот. [c.41]


    Ведущая роль в процессах обмена веществ принадлежит коре больших полушарий головного мозга. Чем совершеннее нервная система животного организма, — писал И. П. Павлов, — тем она централизованнее, тем [c.214]

    Таким образом, между окружающей средой и животным организмом происходит постоянный обмен материи и энергии. Обмен веществ осуществляется при помощи биологических катализаторов — ферментов, которые играют большую роль в химических процессах, протекающих в организме. При выключении из процесса любого из ферментов нарушается нормальный ход обмена веществ. Процессы ассимиляции и диссимиляции находятся под контролем центральной нервной системы, которая, по определению И. П. Павлова, является распорядителем всей деятельности организма. [c.117]

    Белки выполняют поразительно много разнообразных заданий. Почти все химические реакции в организме катализируются особой группой белков, называемых ферментами. Расщепление питательных веществ для генерирования энергии и синтез новых клеточных структур включают тысячи химических реакций, возможность протекания которых обеспечивается белковым катализом. Белки также выполняют роль переносчиков, например гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения — это взаимодействие молекул белков, чье предназначение состоит в осуществлении координированных движений. Еще одна группа белковых молекул, так называемые антитела, защищает нас от чужеродных веществ, таких как вирусы, бактерии и клетки других организмов. Активность нашей нервной системы также зависит от белков, которые получают, передают и собирают информацию из внешнего мира. Белки — это также гормоны, управляющие ростом клеток и координирующие их активность. [c.116]

    Однако было бы совершенно неправильным сводить вопрос о действии сульфаниламидных и других химиотерапевтических средств в больном организме к простому взаимодействию того или иного реактива с организмом микроба. На самом деле процесс этот происходит более сложно очень важную роль здесь играет центральная нервная система, регулирующая все процессы обмена веществ в организме человека и животных. [c.172]

    РОЛЬ НЕРВНОЙ СИСТЕМЫ В ОБМЕНЕ ВЕЩЕСТВ [c.214]

    Роль желез внутренней секреции. Большую роль в поддержании сахара в крови иа постоянном уровне играют надпочечники. Импульсы, идущие со стороны центральной нервной системы, вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников (стр. 191). Адреналин стоком крови доставляется в печень, где стимулирует расщепление гликогена. Есть указания, что адреналин резко повышает активность фосфорилазы —фермента, играющего очень важную роль в процессе мобилизации гликогена (стр. 245). В результате этого содержание сахара в крови повышается. [c.246]

    Распределение минеральных веществ в нервной системе и их участие в обмене изучены недостаточно. В головном и спинном мозгу в качестве постоянных составных частей найдены К, Са, Ыа, Mg, Ре, Си, А1, Zn, Мп, Р, С1, Л и 8. Некоторые из них содержатся в различных отделах головного н спинного мозга в более или менее одинаковых количествах, содержание других колеблется в широких пределах. Так, например,в полушариях мозга кролика найдено 32,3м/сг% (микрограмм-процентов) йода, а в среднем мозгу—416,4 мкг%. Средний мозг человека вообще значительно богаче йодом, чем другие отделы головного мозга. Содержание йода в мозгу, повидимому, связано с деятельностью щитовидной железы и образованием в последней тироксина. Действительно, удаление щитовидной железы у собак вызывает резкое падение содержания йода в мозгу, а введение тироксина приводит к быстрому восстановлению содержания йода в мозгу до нормальных величин. Различие отмечается и в отношении содержания железа. Бледные шары мозга содержат 66,3 мкг% железа (на сухой вес), а продолговатый мозг— 13,9 мкг%. Установлено, что некоторые ионы, в особенности ионы калия, играют большую роль в нервной деятельности, в частности в проведении импульсов по нервному волокну. [c.428]

    Аминокислоты входят в состав белков, которые служа г питательными веществами, регулируют обмен веществ, способствуют поглощению кислорода, играют важную роль в фушощонировании нервной системы, являются механической основой мышечной ткани, участвуют в передаче генетической информации и т.д. [c.236]

    Токсическое действие. Р. отличается высокой токсичностью для любых форм жиз-Бш, широким спектром и большим разнообразием клинических проявлений токсического действия в зависимости от свойств веществ, в виде которых металл поступает в организм (пары Р., неорганические и органические соединения), пути поступления и дозы. В основе механизма действия Р. лежит блокада биологически активных групп белковой молекулы (сульфгидрильных, аминных, карбоксильных и др.) и низкомолекулярных соединений с образованием обратимых комплексов с нуклеофильными лигандами. Установлено включение Р.(II) в молекулу транспортной РНК, играющей центральную роль в биосинтезе белков. В начальные сроки воздействия малых концентраций Р. имеет место значительный выброс гормонов надпочечников и активирование их синтеза. Отмечены фазовые изменения в содержании катехоламинов в надпочечниках. Наблюдается возрастание моноаминоксидазной активности митохондриальной фракции печени. Показано стимулирующее действие неорганических соединений Р. на развитие атеросклеротических явлений, но эта связь нерезко выражена. Пары Р. проявляют нейротоксичность, особенно страдают высшие отделы нервной системы. Вначале возбудимость коры больших полушарий повышается, затем возникает инертность корковых процессов. В дальнейшем развивается запредельное торможение. Неорганические соединения Р. обладают нейротоксичностыо. Имеются сведения о гонадотоксическом, змбриотоксиче-ском и тератогенном действии соединениях Р. [c.484]


    К механизмам, участвующим в сохранении изоосмии, нужно отнести свойство некоторых тканей (ткани печени, подкожной клетчатки) задерживать в себе, депонировать избыточные количества воды и солей, а также отнести способность организма быстро выводить с мочой и потом эти вещества. Особенно важная роль в поддержании изоосмии принадлежит почкам. Указанные процессы в организме регулируются прежде всего нервной системой и железами внутренней секреции. Колебания осмотического давления крови в целостном организме весьма незначительны (в пределах десятых долей атмосферы) даже в условиях тяжелой патологии. В этом отношении интересен эксперимент Гамбургера лошади вводили внутренно 7 л 5%-ного раствора глауберовой соли, что должно было вдвое повысить осмотическое давление крови. Однако в результате действия механизмов, сохраняющих изоосмию, давление повысилось незначительно, а через несколько минут снизилось почти до нормы. [c.27]

    Однако наиболее серьезным подтверждением гипотезы о роли биогенных аминов служит наблюдение, свидетельствующее о мощном ан-тидепрессивном действии ингибиторов моноаминоксидазы. К числу таких ингибиторов относится паргилин (рис. 16-10), образующий ковалентные связи с флавином моноаминоксидазы [96а]. Несмотря на эффективность этого препарата, его прием представляет иногда опасность. Известны случаи, когда из-за резкого снижения активности моноаминоксидазы больные, принимающие паргилин, погибали от присутствия в пище таких соединений, как тирамин (присутствует иногда в сыре). Труднее объяснить действие трициклических антидепрессантов, широко применяемых в клинике. К их числу относится имипрамин (рис. 16-10). Обратите внимание на сходство этого вещества с хлорпромазином, но большую гибкость его центрального кольца [97]. Значительным достижением в лечении маниакально-депрессивных психозов явилось использование солей лития, оказавшихся очень эффективными. Химическая основа их действия неизвестна [98]. В связи с этим следует упомянуть, что Mg + и Мп + представляют собой мощные депрессанты центральной нервной системы ЩНС) и могут вызвать общий наркоз. [c.344]

    Среди веществ, положительно влияющих на когнитивные функции мозга, привлекают внимание вещества пептидной природы. Открытие эндогенных регуляторов пептидной природы явилось больщим достижением молекулярной биологии и медицины [9]. Эндогенные пептиды играют важную роль в регуляции биохимических и физиологических процессов в организме животных и растений, в том числе у животных и человека - в регуляции специфических нейрохимических процессов в центральной нервной системе [1, 4]. [c.208]

    Координирующая роль мембран состоит в том, что многие ферменты активны только в связанном с мембранами состоянии (мембраны создают своеобразный биологический конвейер ). Поэтому, важна также векторная роль мембран в действии ферментов. Примерами могут быть процессы фотосинтеза трансформация энергии и биосинтез органических веществ протекает на мембранах как высокоорганизованный процесс дыхание и окислительное фосфолирование в мембранах митохондрий, а также всасывание и переваривание пищи, возникновение и передача импульсов в нервной системе, работа органов чувств, работа сердца, сокращение мышц. [c.108]

    Аммиак—очень ядовитое вещество, особенно для нервной системы. Особую роль в устранении аммиака играет глутаминовая кислота. Она способна связывать аммиак с образованием глутамина — безвредного для нервной ткани вещества. Данная реакция амидирования протекает при участии фермента глутаминсинтетазы и требует затраты энергии АТФ (см. главу 12). Непосредственный источник глутаминовой кислоты в мозговой ткани—путь восстановительного аминирования а-кетоглутаровой кислоты  [c.635]

    Эффективность вещества, блокирующего проводимость нерва, зависит от его растворимости в аксональной мембране [24]. Но основным требованием, как показано на примере газов-анестетиков, является то, что они должны захватываться межклеточной средой и переноситься к нерву. Таким образом, они должны быть растворимы в воде. Обезболивающий эффект, достигаемый с помощью этих средств, определяется главным образом коэффициентом распределения данного вещества между плазмой и мембраной. Кроме того, важное значение имеет также размер молекулы. Большие молекулы, подобные хлор-промазину, блокируют мембрану при более низких концентрациях, чем в случае маленьких молекул, таких как этанол. И наконец, не последнюю, хотя и не совсем ясную роль играет диаметр нервного волокна волокна меньшего диаметра легче блокируются, чем более толстые. Поскольку волокна центральной нервной системы тоньше волокон периферической нервной системы, то при содержании этанола в сыворотке крови, равном 2%, организму обеспечено бессознательное состояние (общая анестезия), в то время как только при 4—5% этанола блокируются нервные импульсы периферических нервов (местная анестезия). [c.154]

    Единого холинэргического синапса не существует. Холинэргические синапсы представляют собой группу структурно, функционально и фармакологически весьма различных синапсов. Объединяет их только одно — использование ацетилхолина в качестве нейромедиатора. Особого внимания заслуживают ней-ромышечные соединения, где нервный импульс передается мышечному волокну и вызывает его сокращение. Имеются, однако, многочисленные свидетельства того, что холинэргические синапсы, кроме этой периферической функции, играют важную роль в центральной нервной системе [3, 4], участвуя в таких процессах, как поведение, сознание, эмоции, обучение и память. Доказательствами этого служат биохимические исследования метаболизма ацетилхолина и ассоциированных ферментов в центральной нервной системе, а также эксперименты с психофармакологическими веществами, влияющими на холинэргические синапсы. Ацетилхолин представляет собой также важный медиатор вегетативной нервной системы. Во всех ганглиях симпатических и парасимпатических систем имеются холинэргические синапсы. В постганглионарных, т. е. соединяющих ганглий и орган-мишень, нервных волокнах ацетилхолин опосредует передачу нервного импульса во всех парасимпатических синапсах (т. е. синапсах глаз, сердца, легких, желудка, кишечника) и в некоторых симпатических (например, синапсах потовых желез). [c.193]

    Адреналин относится к группе физиологически активных веществ, именуемых катехоламинами, т.е. аминами, производными катехина. Катехоламины животных играют важную роль в функционировании нервной системы, являясь медиаторами дофаминэргических нейронов. Медиаторные функции арилэтиламины 68 и 69 исполняют как в периферической, так и в центральной нервной системах. От метаболизма их зависит психоэмоциональное состояние человека. При стойких нарушениях их обмена развиваются нервнопсихические заболевания неврозы, нервные депрессии, мании, шизофрения и др. [c.430]

    СЯ в повышении активности различных ферментов. Входя в состав витамина В , весьма активно влияющего на поступление азотистых веществ и увеличение содержания хлорофилла и аскорбиновой кислоты, К. активирует биосинтез и повышает содержание белкового азота в растениях, а также играет значительную роль в ряде процессов, происходящих в живом организме. В повышенных концентрациях К. весьма токсичен, прием внутрь большой дозы К. может вызвать быструю гибель. У лиц, подвергавшихся хроническому воздействию соединений К., снижается артериальное давление, в тканях наблюдается увеличение содержания молочной кислоты, нарушаются функции печени. При этом выраженные, клинические проявления могут быть стертыми или отсутствовать вовсе. Изменения в углеводном обмене связаны с нарушениями в эндокринных отделах поджелудочной и щитовидной желез. Нарушения углеводного обмена изменение формы гликемической кривой (уплощение), нарушение толерантности к глюкозе. Ионы К. вступают в хелатные комплексы с белками, разрушающими последние. Нарушается активность мембранных ферментов, что ведет к увеличению проницаемости клеточньгх мембран, повышению в крови уровня трансаминаз, лактатдегидрогеиазы, альдолазы. Действие К. и его соединений на организм приводит к расстройствам со стороны дыхательных путей и пищеварительного тракта, нервной системы, влияют на кроветворение, а также нарушают многие обменные процессы, избирательно действуют на обмен и структуру сердечной мышцы. Все это позволяет считать К. ядом общетоксического действия. [c.457]

    Основные научные работы посвящены биохимии животного организма. В течение многих лет занимался биохимией креатина. Установил роль аргинина в образовании креатина, выявил условия, влияющие на обмен креатина и креатинина, определил функциональную роль креатина в организме. Первым в СССР начал (1919) биохимическое исследование витаминов и расстройства обмена веществ при авитаминозах. Синтезировал водорастворимый аналог витамина К — викасол, который нашел щирокое применение в медицине. Изучал промежуточные химические превращения в процессах внутриклеточного углеводного и фосфорного обмена. Исследовал химический состав различных отделов нервной системы. Провел сравнительно-биохимическое изучение нервной системы у различных видов животных. Изучал зависимость биохимических процессов в мозгу от функционального состояния организма, в частности при возбуждении и торможении. Показал раннюю химическую дифференциацию различных отделов головного мозга (уже с третьего месяца эмбрионального развития). Полученные им результаты изучения биохимии мышечной деятельности легли в основу представлений функциональной биохимии о процессах утомления, отдыха и тренировки мыщц. [c.380]

    Обычно в. норме функционирует только часть мальпигиевых телец, в которых и происходит образование первичной мочи. Количество функционирующих клубочков и, следовательно, объем отделяемой почкой мочи зависят от ряда условий. Деятельность органов мочеотделения находится прежде всего под контролем центральной нервной системы. При сильных болевых раздражениях или психических эмоциях может, например, возникать анурия — прекращение процесса мочеобразования. Д и у-р е 3 (мочеотделение) зависит также от поступления в кровь ряда гормональных веществ, вырабатываемых в эндокринных железах (гипофиз, надпочечники и др.), работа которых в свою очередь регулируется центральной нервной системой. Помимо почек, роль выделительных органов играют отчасти кожа с ее потовыми железами, кишечник, печень и легкие. Однако только почки являются органами, специально приспособленными к функции выделения различ ных конечных продуктов обмена. Удаление обеих почек у животного быстро приводит к состоянию тяжелой уремии (мочекровие), заканчивающейся смертью спустя короткое время после операции. [c.456]

    Роль медиаторов в центральной нервной системе могут также играть -амн-номасляная кислота, глицин и другие вещества. [c.266]

    Роль 5-ОТ, присутствующего в высокой концентрации в стенках кишечника, не ясна, но Бюлбринг [53] предполагает, что 5-ОТ принимает участие в осуществлении локальных кишечных рефлексов, т. е. перистальтики. Некоторые считают 5-ОТ агентом при анафилактическом шоке, антидиуретическим гормоном и нейрогуморальным агентом центральной нервной системы. Несмотря на выяснение синтеза и метаболизма фенолов индольного ряда и успешное изучение эффектов 5-ОТ на гладкую мышцу, истинную физиологическую роль этого соединения все еще трудно определить. 5-ОТ участвует в ряде патологических нарушений. Из злокачественных опухолей кишечника 5-ОТ выделен в значительных количествах. Опухоли образуются из аргентаффинных клеток, содержащих декарбоксилазу в высокой концентрации. Некоторые опухолевые ткани вместо 5-ОТ секретируют 5-окситриптофан. Наличие больших количеств 5-ОТ в крови приводит к нарушениям кровообращения, которые могут быть выявлены давлением на опухоли снаружи. Открытие сильно действующих антагонистов 5-ОТ привело к использованию этих веществ для лечения сердечно-сосудистых нарушений. Однако единственно эффективным средством является хирургическое вмешательство. [c.367]

    Пенициллины нашли широкое применение в разных отраслях медицины. Так, они используются в педиатрии - , в частности при лечении скарлатины "- , дифтерии б-зэ кори - и сепсиса новорожденных - , а также в хирургии - - , в особенности при обработке инфицированных ран - и осложненных переломов - . Далее они применяются в гинекологии и акушерстве - , в офталь-мологии , ото-рино-ларингологии , в стоматологии и одонтологии . Большое значение имеют эти антибиотики при лечении болезней сердца . легких - некоторых заболеваний мозга и нервной системы . 2- 80 Особенно важную роль эти вещества играют в дерматологии и венерологии , где их применение произвело полный переворот в лечении гонорреи (в особенности сульфамидоустойчивой) и сифилиса 1"= 4 Имеются указания на успешное применение пенициллинов и при ряде других заболеваний (см. указанные выше монографии и обзоры - , а также отдельные работы советских исследователей - ). Ряд работ посвящен изучению различных методов введения пенициллинов в организм. [c.94]


Смотреть страницы где упоминается термин Нервная система роль веществ: [c.4]    [c.43]    [c.280]    [c.120]    [c.251]    [c.76]    [c.489]    [c.245]    [c.243]    [c.489]    [c.388]    [c.389]   
Биологическая химия Издание 3 (1960) -- [ c.405 ]

Биологическая химия Издание 4 (1965) -- [ c.429 ]




ПОИСК







© 2025 chem21.info Реклама на сайте