Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пировиноградная кислота обмен

    Пировиноградная кислота является узловым продуктом и в так называемом цикле Кребса., играющем огромную роль в обмене веществ в растительных и животных организмах. Посредством отдельных звеньев этого цикла строятся такие биохимически важные кислоты, как лимонная, кетоглутаровая, янтарная, фумаровая, яблочная. Полный цикл — это цикл клеточного дыхания животных и растений, приводящий к окислению 1 моль пировиноградной кислоты (в свою очередь образующейся из глюкозы) в 3 моль СО2 и 2 моль Н2О. [c.465]


    Последняя регулирует углеводный обмен в дрожжевой клетке путем декарбоксилирования пировиноградной кислоты. Следовательно, всякие нарушения в процессах синтеза дрожжами витамина Bi влекут за собой нарушения углеводного обмена в дрожжевой клетке, т. е. приводят к подавлению ее жизнедеятельности. Сказанное в отношении витамина Bi и фермента карбоксилазы, несомненно, касается других витаминов и ферментов, участвующих в сложных биохимических процессах дрожжевой клетки. Из каких компонентов дрожжи синтезируют эти витамины и ферменты, наукой еще в ряде случаев не установлено. Известно, однако, что в натуральных продуктах, богатых витаминами, имеются все необходимые компоненты (так называемый биос), позволяющие дрожжевой клетке синтезировать витамины и ферменты. - -. .  [c.188]

    Таким образом, при анаэробном распаде углеводов, который происходит при процессах брожения, анаэробного дыхания и является первичной фазой аэробного дыхания, из одной молекулы гексозы образуются две молекулы пировиноградной кислоты. При этом выделяется энергия, которая связывается в виде АТФ, и образуется ряд промежуточных продуктов, играющих важную роль в обмене веществ. Пировиноградная кислота в зависимости от условий и от специфических особенностей данного организма может затем подвергаться различным превращениям. Например, в анаэробных условиях пировиноградная кислота под действием фермента пируватдекарбоксилазы подвергается расщеплению на углекислый газ и уксусный альдегид  [c.159]

    Пировиноградная кислота является также связующим звеном между обменом углеводов и белков, так как она может образоваться из продуктов превращений ряда аминокислот. С другой стороны, она служит источником синтеза аминокислоты аланина, из которой в результате переаминирования могут образовываться другие аминокислоты  [c.160]

    Таким образом, пировиноградная кислота занимает главное положение в обмене углеводов и одно из важных мест в обмене веществ растения. [c.160]

    Обратимость реакций анаэробного распада углеводов имеет очень большое значение в жизнедеятельности растений. Мы уже говорили, что пировиноградная кислота играет главную роль в углеводном обмене и занимает одно из важных мест в общем обмене веществ. Она связана взаимными переходами с обменом аминокислот, белков, жиров, органических кислот и других соединений. За счет пировиноградной кислоты или других промежуточных продуктов цикла анаэробного распада углеводов может синтезироваться глюкоза, а следовательно, и другие углеводы таким образом пировиноградная кислота связывает в [c.164]


    Серин тесно связан с обменом пировиноградной кислоты, и из него, как и из а-аланина, могут синтезироваться углеводы. Ниже приведена реакция превращения серина в пировиноградную кислоту  [c.251]

    Одной из важных обменных реакций, требующих участия тиамина, является реакция декарбоксилирования пировиноградной кислоты [c.174]

    Серьезные расстройства в обмене углеводов могут возникнуть вследствие недостатка в тканях тех или иных каталитических систем (например, коферментов), участвующих в аэробном распаде углеводов. Так, например, при Вг авитаминозе или гиповитаминозе затрудняется, как уже указывалось, окисление пировиноградной кислоты. Для окислительного превращения пировиноградной кислоты в животных тканях необходимо присутствие кокарбоксилазы. Последняя содержит в своей молекуле витамин Bi, недостаток которого при гиповитаминозе и тормозит превращение пировиноградной кислоты, а следовательно, и нормальный обмен углеводов. Введение в организм достаточных количеств витамина Bi возвращает углеводный обмен к норме. [c.276]

    Превращения глюкозы и гликогена в нервной ткани. Обмен углеводов в нервной ткани отличается, как мы видели, тем, что исходным субстратом в реакциях превращения углеводов нервной ткани является в основном глюкоза. Промежуточным продуктом окисления глюкозы является пировиноградная кислота, дальнейшие превращения которой были нами рассмотрены ранее (стр. 260). Гликолитический механизм превращения углеводов в мозгу может быть источником энергии как в аэробных, так и в анаэробных условиях, поскольку в мозгу обнаружен интенсивно протекающий не только анаэробный, но и аэробный гликолиз. [c.407]

    Подчеркнем также, что хотя ресинтез гликогена из ранее образовавшейся молочной кислоты за счет использования энергии окислительных процессов (так называемая реакция Мейергофа) и вполне возможен, тем не менее это отнюдь не означает, что при работе мышцы в условиях хорошего снабжения кислородом углевод сначала распадается на молочную кислоту, а затем уже последняя подвергается окислению и частичному превращению в гликоген. Напротив, в настоящее время установлено, что в аэробных условиях углевод окисляется в тканях, в частности в мышцах, распадаясь пе до молочной, а до пировиноградной кислоты. Именно пировиноградная кислота и вовлекается дальше в цикл трикарбоновых кис-.лот, сгорая в конечном счете до СО2 и Н2О (см. главу Обмен углеводов ). [c.429]

    Особенно резко нарушается при авитаминозе Вх углеводный обмен в мозгу. Действительно, при экспериментальном авитаминозе В1 и при бери-бери у человека накопление кетокислот (пировиноградной кислоты) отмечается прежде всего в мозгу, а затем в крови и других тканях. Таким образом, стало понятным, почему клинически бери-бери выражается преимущественно в различных расстройствах функции центральной и периферической нервной системы (невриты, параличи, потеря чувствительности и др.). При введении в организм витамина В или кокарбоксилазы способность тканей окислять пировиноградную кислоту тотчас же восстанавливается. [c.164]

    Образовавшаяся пировиноградная кислота, в форме ацетил-КоА, вовлекается затем в цикл трикарбоновых кислот (см. главу Обмен углеводов , стр. 272) и окисляется до СО3 и Н2О. [c.304]

    Превращения глюкозы и гликогена в нервной ткани. Обмен углеводов в нервной ткани отличается, как мы видели, тем, что исходным субстратом в реакциях превращения углеводов нервной ткани является в основном глюкоза. Промежуточным продуктом окисления глюкозы является пировиноградная кислота, дальнейшие превращения которой были нами рассмотрены ранее (стр. 273). [c.431]

    Пировиноградная кислота играет видную роль в процессе алкогольного брожения и в углеводном обмене в животном организме. Декарбоксилирование пировиноградной кислоты при алкогольном брожении происходит за счет особого фермента — декар- боксилазы по схеме  [c.189]

    Из какой аминокислоты в процессе переаминирования могла бы образоваться пировиноградная кислота На какой стадии пировиноградная кислота включается в углеводный обмен (См. фиг. 104). Может ли организм использовать аминокислотный предшественник пировиноградной кислоты для синтеза гликогена Жирных кислот АТФ  [c.415]

    Молочная и пировиноградная кислоты играют большую роль в обмене веществ, так как они являются важнейшими промежуточными продуктами превращения углеводов и других веществ в организме. [c.67]

    Являясь производной пировиноградной кислоты, щавелевоуксусная кислота принимает активное участие в общем обмене веществ, связывая между собой превращения углеводов, аминокислот и белков. [c.251]

    Подобно этому в обмене веществ участвуют витамины (стр. 392). Большинство витаминов входит в состав двухкомпонентных ферментов. Витамин Вх включается в простетическую группу фермента декарбоксилазы пировиноградной кислоты. Витамин Ва составляет небелковую часть флавиновых ферментов. Витамин Вб входит в состав декарбоксилаз аминокислот. Таким образом, витамины участвуют в белковом, углеводном и жировом обмене. Обеспеченность растений витаминами зависит от внешних факторов, климатических условий, азотного, фосфорного и калийного питания. [c.404]


    Виндаус выделил витамин Bi в чистом виде [6] и в 1932 г. установил его эмпирическую формулу С12Н ig0N4S l2-HjO. Витамин Bj имеет важное значение для животного организма. Он входит в состав фермента карбокси-лазы, катализирующего реакции декарбоксилирования пировиноградной кислоты и других а-кетокислот. При недостатке тиамина в организме происходит накопление пировиноградной кислоты — продукта обмена углеводов, что нарушает нормальную функцию нервной системы и вызывает заболевание полиневритом (бери-бери). Тиамин излечивает эту болезнь. Кроме того, дифосфат тиамина входит в состав многих других ферментов в качестве кофермента, связанного с апоферментом — белком. Сюда относятся и ферменты, катализирующие реакции обмена углеводов типа альдоль-ных конденсаций и др. Витамин Bj связан также с функцией органов кроветворения, участвует в обмене воды, углеводов, жиров и минеральннх солей [7, 8, 9, 101. Витамином В богаты дрожжи (пивные и пекарские) и злаки, не очищенные от отрубей. Ржаной, а также пшеничный цельный хлеб, крупы (в особенности гречневая) являются для человека основным источником витамина Bj. [c.64]

    Кроме антипеллагрического действия, никотиновая кислота принимает участие в углеводном, белковом, холестериновом и основном обмене веществ [14—17]. Никотиновая кислота обладает инсулиноподобным действием — регулирует содержание сахара в крови. Имеются данные о том, что никотиновая кислота снижает избыточное содержание пировиноградной кислоты в крови и повышает содержание холестерина в ней. Никотиновая кислота повышает кислотность желудочного сока в ряде случаев в последнем появляется свободная соляная кислота, когда обычные физические раздражители (бульон, капустный отвар) этого не обеспечивают. [c.184]

    Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь фруктоза способна фосфорилироваться при участии более специфического фермента—фруктокиназы. В результате образуется фруктозо-Ьфосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-Ьфосфат под действием альдолазы расщепляется на две триозы диоксиацетонфосфат и глицеральдегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-З-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты. [c.555]

    Тиамин в виде фосфорного эфира (кокарбокснлазы) входит как простетическая группа в состав тиаминовых ферментов, которые принимают участие в углеводном обмене, в осуществлении реакции декарбоксилирования пировиноградной кислоты и других а-кетокислот, например а-кетоглу- [c.413]

    Витамины группы В. Витамин Bi (тиамин) —гетероциклическое соединение состава i2H]gON4S 2 — участвует в жировом обмене и тонизирует нервную систему. В организме он соединяется с двумя молекулами фосфорной кислоты и образует активную группу фермента карбоксилазы, способствующего разложению промежуточного продукта расщепления углеводов — пировиноградной кислоты. Витамин Bi устойчив при нагревании в кислой среде, но быстро инактивируется в щелочной. Содержится в дрожжах, семенах злаковых и бобовых культур (в наружной оболочке и зародышах семян), в печени жи- [c.133]

    Обменные и эндокринные нарушения. С. вызывает нарушения обмена порфиринов и ряд ферментативных расстройств. Порфиринурия и, особенно, повышенное содержание в моче А-аминолевулиновой кислоты расцениваются как кардинальные признаки интоксикации С. Содержание Ре в моче после 5 лет контакта с С, изменилось с 342 до 459 мкг% выделение его с мочой возросло в 3—6 раз (Бикезина). С. изменяет энергетические процессы в клетках. Известно нарушение белкового, липоидного и углеводного обмена, Вггиповита-миноз, накопление пировиноградной кислоты и кетокислот рез кое снижение содержания никотиновой кислоты в крови и моче, снижение концентрации витамина В12 в крови, дефицит витамина С — последний, возможно, способствует депонированию С. в виде нерастворимого аскорбата С. (Рашевская др.). Считают, что воздействие С. предрасполагает к развитию атеросклероза. [c.423]

    L-(-f-)-Аланин, .-аминопропионовая кислота, GH3GHNH2GOOH обычная составная часть всех белков, образуется из пировиноградной кислоты вследствие переаминирования и превращается в эту кислоту в результате нереаминирования и дезаминирования таким образом, устанавливается непосредственная связь с обменом углеводов. [c.394]

    Благодаря низкой растворимости семикарбазонов и легкости их разложения на исходные продукты их часто используют для выделения кетонов из сложной реакционной смеси. Хорошим методом расщепления этих производных является обменная реакция с пировиноградной кислотой СН3СОСООН. Реакцию проводят в среде уксусной кислоты, содержащей ацетат натрия таким образом, по окончании реакции и разбавления смеси водой образовавшийся семикарбазон пировиноградной кислоты остается в растворе в виде соли [c.507]

    Хотя ацетоуксусная кислота может возникать частично и при обмене углеводов за счет конденсации двух молекул уксусной кислоты, образующейся при дегидрогенировании или декарбокси-лировании пировиноградной кислоты, однако, такая ацетоуксусная кислота полностью окисляется и не вызывает ацетонурии. [c.130]

    При окислительном дезаминировании из аланина образуется пировиноградная кислота, из глутаминовой кислоты — а-кетоглутаровая, а из аспарагиновой — щавелевоуксусная кислота, т. е. промежуточные продукты обмена, присущие обмену углеводов и жиров, связывающие обмен аминокислот с цепью реакций цикла трикарбоновых кислот (лимоннокислого цикла). [c.194]

    При Вравитаминозе нарушается углеводный обмен, что указывает на накопление одного из промежуточных продуктов обмена пировиноградной кислоты в мозгу, в крови и в других тканях. Это объясняется тем, что витамин В1 входит в состав простетической группы фермента, под влиянием которого происходит расщепление пировиноградной кислоты. Так как нарушение углеводного обмена наступает прежде всего и более резко в мозгу, а затем уже в крови и в других тканях, то понятно, почему Вгавитаминоз сопровождается такими заболеваниями, как полиневриты, параличи и другие заболевания периферической и центральной нервной системы. [c.132]

    Витамин В1 играет очень важную роль в обмене веществ у растений и животных. В виде фосфорного эфира он входит в фермент пируватдекарбоксилазу, катализирующую декарбо-ксилирование пировиноградной кислоты, а также в состав других декарбоксилаз, участвующих, например, в декарбоксилиро-вании аминокислот. Кроме того, соединяясь с липоевой кислотой и двумя остатками фосфорной кислоты, витамин В1 превращается в линотиаминдифосфат (стр. 166), который входит в активную группу пируватдегкдрогеназы, катализирующей окислительное декарбоксилирование пировиноградной и а-кетоглу-таровой кислот. Очевидно, при недостатке или отсутствии витамина В1 реакции декарбоксилирования пировиноградной и некоторых других кислот в организмах подавляются, и происходит накопление этих кислот в тканях. Так как пировиноградная кислота занимает центральное положение в обмене углеводов (стр. 160), недостаток тиамина приводит прежде всего к нарушениям углеводного обмена. Такие нарушения вызывают поражения в первую очередь нервных тканей, и поэтому при недостатке витамина В] наблюдаются воспаление нервных стволов, потеря чувствительности кожи, параличи и другие характерные признаки полиневрита. [c.88]

    Пировиноградная кислота может превраил,аться в уксусную кислоту. Эта кислота, в свою очередь, является потенциальным источником жирных кислот, из которых образуются жиры и липиды. Поэтому пировиноградная кислота является связующим звеном не только между углеводным и белковым обменом, но и между обменом углеводов и жиров. [c.160]

    Пировиноградная кислота тесно связана с обменом углеводов, и из нее могут образовываться сахара в результате обра- [c.249]

    Необходимо подчеркнуть, что тяжелые формы кетонемии при диабете,, сопровождающиеся развитием ацидоза и возникновением комы, конечно, нельзя рассматривать как компенсаторное приспособление. В этом случае мы, несомненно, имеем дело с патологическим нарушением обменных процессов. Механизм их возникновения можно (хотя бы отчасти) объяснить следующим образом при недостаточном окислении углеводов и усиленном распаде жиров и белков в организме появляется избыток промежуточных и конечных продуктов жирового и азотистого обмена, в частности аммонийных солей. Но аммиак прерывает лимоннокислый цикл Кребса, устраняя кетоглютаровую кислоту путем аминирования ее в глютаминовую кислоту. Вследствие этого в ткаиях нарушается в той или иной степени способность к окислению пировиноградной и уксусной кислот (точнее ацетилкоэнзима А), обмен которых переключается на образование ацетоуксусной кислоты (см. стр. 292). 1%)оме того, вероятное нарушение карбоксилирования пировиноградной кислоты ограничивает синтез щавелевоуксусной кислоты и делает малоэффективным цикл трикарбоновых кислот. Это также может быть одной из причин развития тяжелого ацидоза при диабете. [c.300]

    Глицин синтезируется переаминированием глиоксиловой кислоты, а глиоксиловая кислота, как сейчас установлено в опытах с микробами, возникает при расщеплении одного из членов цикла трикарбоновых кислот, а именно изолнмонной кислоты (на глиоксиловую и янтарную). В то же время пусковая реакция цикла (конденсация ацетилкоэнзима А со щавелевоуксусной кислотой) материально обеспечивается углеводным обменом, поскольку пировиноградная кислота — промежуточный продукт углеводного обмена — путем карбоксилирования дает щавелевоуксусную кислоту или, подвергаясь окислительному декарбоксилированию в присутствии КоА, дает ацетилкоэнзим А (стр. 260). Кроме того, глицин может образоваться при распаде серина. [c.379]

    В обмене некоторых растений значительную роль, по-видимому, играют реакции переаминирования между 7-метиленглут-аминовой кислотой и щавелевоуксусной, а-кетоглутаровой или пировиноградной кислотами [357], что подтверждается наличием в растительных тканях у-метиленглутаминовой кислоты [353, 354] и а-кето- -метиленглутаровой кислоты [355, 356]. [c.238]

    Наконец, следует упомянуть о том, что у гельминтов при некоторых условиях обмен пировиноградной кислоты идет по иному пути —она в конце концов превращается в ацетат, который и накапливается. Если первым звеном здесь является ни-руватдегидрогеназа, то схема этого пути формально аналогична обмену а-кетоглутарата  [c.71]


Смотреть страницы где упоминается термин Пировиноградная кислота обмен: [c.19]    [c.92]    [c.254]    [c.575]    [c.48]    [c.455]   
Биохимия аминокислот (1961) -- [ c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Пировиноградная кислота



© 2025 chem21.info Реклама на сайте