Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень в жировом обмене

    Нарушения жирового обмена. В жировом обмене велика роль печени. В печени вырабатывается желчь, а, как указывалось выше, желчные кислоты активируют липазу, способствуют эмульгированию жиров, всасыванию жирных кислот и холестерина. Следовательно, заболевания печени, связанные с нарушением секреции желчи, закупорка желчного протока и воспаление желчного пузыря приводят к нарушению обмена липидов. [c.165]


    При избыточном количестве липидов в пище и заболевании диабетом образуются ацетоновые (или кетоновые) тела, т.е. смесь ацетона, ацетоуксусной кислоты и Р Гидроксибутирата. Кетоновые тела могут образоваться также при голодании, когда из жировых депо выделяются жирные кислоты, а обмен углеводов в печени снижен. При накоплении кетоновых тел также уменьшается pH биологических жидкостей и развивается метаболический ацидоз. [c.101]

    На приведенном рис. 27.1 отчетливо видна метаболическая специализация отдельных органов, которая определяется в первую очередь наличием в них специфической метаболической регуляции. Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. Мышцы, например, использ тот в качестве источника энергии глюкозу, жирные кислоты, кетоновые тела и синтезируют гликоген в качестве энергетического резерва, в то время как мозговая ткань в качестве энергетического источника использует исключительно глюкозу. Специализация жировой ткани — синтез, запасание и мобилизация триацилглицеролов. Исключительно велика роль печени в обмене практически всех органов. Это мобилизация гликогена и глюконеогенез, которые обескровь [c.441]

    Биотин (витамин Н) — органическое вещество, входит в состав ферментов, регулирующих белковый и жировой обмен, обладает высокой активностью. При недостатке Б. наблюдаются поражения кожи, мышечная слабость, замедляется рост. Наиболее богаты Б. дрожжи, помидоры, шпинат, соя, яичный желток. Б. в живом организме концентрируется в печени, почках. [c.26]

    Известно, что главным источником жирных кислот, используемых в качестве топлива , служит резервный жир, содержащийся в жировой ткани. Принято считать, что триглицериды жировых депо выполняют в обмене липидов такую же роль, как гликоген в печени в обмене углеводов, а высшие жирные кислоты по своей энергетической роли напоминают глюкозу, которая образуется в процессе фосфоролиза гликогена. При [c.370]

    Выяснено, что при недостаточности холина в организме наблюдается ряд серьезных нарушений в обмене — жировая дегенерация печени и кровоизлияния в почках. Эти явления, как оказалось, обусловлены недостатком лабильных метильных групп в организме и могут быть устранены дачей либо холина, либо метионина. Метионин может полностью заменить цистеин (цистин) в питании. Это объясняется тем, что цистеин и цистин [c.347]

    До недавнего времени считали, что метаболизм липидов происходит исключительно в печени. Когда же обнаружили, что большинство тканей способно полностью окислять жирные кислоты, и появились данные о том, что в жировой ткани происходит активный метаболизм липидов, взгляд на роль печени в обмене липидов изменился. Тем не менее концепция ключевой и уникальной роли печени в обмене липидов все еще является ведущей. Печень выпол- [c.265]


    С белковым голоданием связан также распад ряда ферментных белков, которые выполняют каталитическую функцию в углеводном или жировом обмене. Действительно, было обнаружено, что печень крыс, находившихся 15—20 дней на малобелковой диете, была практически лишена гликогена, несмотря на большое количество углеводов в пище и высокую ее калорийность. [c.371]

    Печень в жировом обмене [c.408]

    Вс — фолацин, фолиевая кислота и ее производные, регулируют кроветворение и жировой обмен. Содержится в печени, дрожжах, многих овощах (зелени петрушки, шпината, в листовом салате). Суточная потребность организма в витамине Вс — 2,0—2,5 мг  [c.55]

    Выяснено, что при недостаточности холина в организме наблюдается ряд серьезных нарушений в обмене — жировая дегенерация печени и кровоизлияния в почках. Эти явления, как оказалось, обусловлены недостатком лабильных метильных групп в организме и могут быть устранены дачей либо холина, либо метионина. Метионин может полностью заменить цистеин (цистин) в питании. Это объясняется тем, что цистеин и цистин синтезируются в организме животных, но необходимым условием для их синтеза является наличие метионина в пище. [c.367]

    Вопросу распределения витамина А р теле животного посвящено мало работ, да и те весьма общего" характера. До сих пор не вполне уточнена роль витамина А в организме животного. Известно, например, что он активирует действие инсулина и способствует повышению запасов гликогена в печени, принимает участие в жировом обмене и т. д. Это свидетельствует о многогранности его действия, и нет сомнения, что дальнейшие исследования в этой области должны дать интересные результаты. [c.46]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]

    При голодании, когда истощаются резервы углеводов в печени, мобилизуется жир из жировых тканей и транспортируется в печень, играющую основную роль в обмене жиров, и в другие ткани, где в нем испытывается нужда. Поступивший в этом случае в печень жир подвергается распаду и затем окислению продуктов распада. При этом длинные цепи жирных кислот превращаются в масляную кислоту, из которой образуются так называемые ацетоновые тела ацетоуксусная кислота, Р-оксимасляная кислота и ацетон. В нормальных условиях, когда распад жира сопровождается достаточным распадом углеводов, конечным продуктом распада является уксусная кислота, окисляющаяся дальше до углекислого газа и воды. [c.408]

    Печень - важнейший орган, в котором питательные вещества, всосавшиеся из кишечника, преобразуются для использования другими тканями организма. Большую часть крови печень получает прямо из кишечного тракта (через портальную вену). Гепатоциты ответственны за синтез, расщепление и хранение множества различных веществ. Они играют центральную роль в углеводном и жировом обмене всего организма и они же вырабатывают большую часть белков, содержащихся в плазме крови. В то же время гепатоциты сохраняют связь с просветом кишечника через систему мельчайших канальцев и более крупных протоков (рис. 17-10, Б). Через эти протоки гепатоциты выделяют в кишечник и отходы метаболизма, и эмульгирующее вещество - желчь, которая облегчает всасывание жиров. Внутри популяции гепатоцитов (в отличие от остальных частей пищеварительного тракта), по-видимому, нет заметного разделения труда все гепатоциты способны выполнять один и тот же широкий круг метаболических и секреторных функций. [c.162]

    В обмене жиров важную роль играет печень, где идет расщепление и биосинтез жиров. Если нарушается баланс между этими процессами, то наступает жировое перерождение клеток печени - цирроз, причиной которого могут быть отравление алкоголем, галоидными веществами, недостаток белка в пище, инфекционные заболевания, рак печени, сахарный диабет. [c.115]

    В крови увеличивается содержание эритроцитов и ретикулоцитов и уменьшается содержание лейкоцитов, нарушается свертываемость крови, развиваются поражения миокарда, почек (клубочкового и канальцевого аппаратов), желудочно-кишечного тракта, поджелудочной железы, печени, нарушения функции регулирующих систем, белкового, жирового и углеводного обменов. [c.454]


    Эта реакция необратима и в основном протекает в микросомах и митохондриях гепатоцитов, а также в цитозоле клеток. Уксусная кислота, являясь естественным субстратом клеточных ферментов, образует ацетил-КоА, который затем вовлекается в цикл Кребса. Последствия избыточного образования уксусной кислоты при алкогольной интоксикации проявляются во-первых, в усилении процессов биосинтеза с участием аце-тил-КоА, что приводит к нерациональному использованию энергии во-вторых, в накоплении в тканях восстановленных и снижении содержания окисленных форм НАД, что имеет принципиальное значение для понимания биохимической сущности алкогольного отравления. Для окисления 125 г этанола требуется столько же НАД, сколько потребляется при окислении 500 г глюкозы, т. е. того количества углеводов, которое расходуется организмом за сутки. В результате нарушаются жизненно важные обменные процессы, такие, как гликолиз, энергетический обмен, усиливается синтез жирных кислот и липидов, что, в частности, может приводить к жировому перерождению печени. [c.412]

    У животных наблюдается также жировая инфильтрация печени с отложением большого количества холестерина. Инозит устраняет эти нарушения, в то время как холин (стр. 97) оказывается в этом отношении неэффективным. По-видимому, инозит в процессе метаболизма превращается в глюкозу и таким путем может включиться в углеводный обмен. [c.173]

    Эти соединения предотвращают появление седых волос, способствуют развитию здорового кожного покрова и играют значительную роль в жировом и углеводном обмене веществ. Они имеют большое значение для работы желез и печени, а также для желудочно-кишечного тракта и дыхательных путей. Соединения растворимы в воде. [c.227]

    Большая часть всех всосавшихся и ресинтезированиых липидов поступает в лимфатические сосуды и затем в кровь, меньшая часть — непосредственно в кровяное русло. Током крови [ипиды переносятся в печень, к периферическим тканям и в жировое депо, где происходят процессы промежуточного обмена. Посредством крови происходит постоянный обмен липидами между отдельными органами. Транспортными формами липидов являются липопротеины и фосфатиды. [c.397]

    Обмен липидов соматотропин способствует освобождению свободных жирных кислот и глицерина из жировой ткани, повыщению их уровня в крови и р-окислению в печени, при дефиците инсулина повыщает кетогенез. Эти эффекты и влияние на обмен углеводов не опосредуются ЮР-1. [c.404]

    Клетки печени называются гепатоцитами. Кроме них, в печени имеются только нервные элементы и клетки, связанные с кровеносными и лимфатическими сосудами. Гепатоциты содержат крупные ядра, хорошо развитый аппарат Гольджи, большое число митохондрий и лизосом, а также множество гликогеновых гранул и жировых капель. Гепатоциты плотно прилегают друг к другу, а в местах контакта с кровеносными капиллярами образуют микроворсинки, через которые происходит обмен веществами между гепатоцитами и кровью. [c.423]

    Промежуточный обмен липидов интенсивно протекает в печени и жировой ткани, где постоянно происходит синтез резервных и других липидов, а также их распад. Синтез резервных жиров, которые являются триглицеридами, приводит к накоплению их в тканях депонированию). Постоянно протекает и процесс распада резервных жиров до глицерина и жирных кислот, которые затем утилизируются тканями мобилизация жиров). Процесс распада нейтральных жиров в тканях осуществляется с участием тканевых липаз и называется липолизом. [c.196]

    Человек. При вдыхании 4300 и 8600 мг/м дважды в день в течение 5 дней у мужчин-добровольцев отмечено незначительно угнетение функции ЦНС, не влиявшее на работоспособность по тестам внимания. При обследовании 50 человек, работавших в контакте с Т. (концентрации в течение 6-ч рабочего дня колебались в пределах 400—40000 мг/м и равнялись в среднем 5800 мг/м ) в течение 3,5—4,5 лет, не было выявлено существенных сдвигов в состоянии здоровья и показателях белкового, углеводного и жирового обменов, а также функции печени однако у работающих отмечались более частые риниты, бронхит и астма по сравнению с контрольной группой. Рабочие с 10-летним стажем при концентрации в воздухе 178—477 мг/м предъявляют жалобы на головные боли, головокружения, особенно Б конце рабочего дня. В начале смены в выдыхаемом воздухе и в сыворотке крови Т. отсутствует, в конце смены в выдыхаемом воздухе до 25 мг/м , в сыворотке крови у женщин 9,75 мг/м , у мужчин 1,2—4,85 мг/м . Содержание лейкоцитов, эритроцитов, НЬ и трансаминаз в крови, белка и сахара в моче — в пределах нормы (Trieberg, Burkhardt). У монтеров телефонных сетей, применяющих Т. для очистки контактов (концентрации в воздухе 4 600—29 500 мг/м ), жалобы на головные боли, головокружения, тошноту, боли в области живота. На биопсии выявлена жировая дистрофия печени (Lun, S hmidt). [c.637]

    Некоторые поступающие в печень аминокислоты задерживаются и используются в протекающих в печени реакциях с другой стороны, печень выделяет в кровь те аминокислоты, которые в ней синтезировались. Б кровь поступают также аминокислоты, образовавшиеся в других тканях при катаболизме (расщеплении) их белков. Белки и аминокислоты не накапливаются в виде запасных отложений, как накапливаются продукты углеводного и жирового обмена. Для целей обмена может использоваться временный аминокислотный фонд, образующийся при повышении концентрации аминокислот за счет процессов их всасывания, синтеза, а также образования при расщеплении белков. Этот аминокислотный фонд доступен для всех тканей и может использоваться в процессах синтеза вновь образующихся тканевых белков, белков крови,гормонов, ферментов и небелковых азотистых веществ, таких, как креатин и глютатион. Взаимоотношения между аминокислотным фондом и обменом белков можно представить в общих чертах в виде схемы, приведенной ниже  [c.378]

    Витамины группы В. Витамин Bi (тиамин) —гетероциклическое соединение состава i2H]gON4S 2 — участвует в жировом обмене и тонизирует нервную систему. В организме он соединяется с двумя молекулами фосфорной кислоты и образует активную группу фермента карбоксилазы, способствующего разложению промежуточного продукта расщепления углеводов — пировиноградной кислоты. Витамин Bi устойчив при нагревании в кислой среде, но быстро инактивируется в щелочной. Содержится в дрожжах, семенах злаковых и бобовых культур (в наружной оболочке и зародышах семян), в печени жи- [c.133]

    Образование Ж. к. происходит в печени и, по-видимому, связано с обменом хо.гестерина, г. к. при введении животным дейтерохолестерина удается выделить холевую к-ту, содержащую дейтерий. Большое физиологич. значение имеют комплексные соединения Ж. к. с разнообразными органическими веществами, в частности растворимые в воде комплексы дезокси-холевой к-ты (так называемые холеиновые кислоты). Комплексы Ж. к. с жирами и жирными к-тами играют большую роль в жировом обмене (см. Обмен веществ). [c.25]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]

    Глюкагон (гипергликемический фактор) — гормон, вырабатывающийся -клетками островков Лангерганса и обладающий гликогенолитическим и глюконеогенетиче-ским действием, чем и обусловлен его гипергликемический эффект. Глюкагон влияет на транспорт ионов, липолиз и ряд других обменных процессов. Органами-мишенями для этого гормона является печень, жировая ткань, островки Лангерганса поджелудочной железы, миокард. [c.272]

    Из этой схемы видно, что при последовательном -окислепии четных жирных кислот должна в конечном счете образоваться масляная кислота, р-окисление которой дает ацетоуксусную кислоту Hg- O- Ho- OOH или уксусную кислоту СНд СООН. В согласии с такой схемой, у животных с нарушенным жировым обменом (например, при экспериментальном диабете) или в изолированной печени масляная кислота и четные жирные кислоты полностью превращаются в ацетоуксусную кислоту и другие ацетоновые тела. Если же вводить животному в пищу нечетные жирные кислоты, то получается гораздо меньше ацетоновых тел, так как конечным продуктом р-окисления нечетных кислот является пропионовая кислота СНз СНа СООН, идущая на синтез глюкозы и др. [c.484]

    Обмен липидов. Инсулин стимулирует синтез триглицеридов в жировой ткани за счет накопления ацетил-КоА и НАДФН для биосинтеза жирных кислот поддержания нормального уровня ацетил-КоА-карбоксилазы, катализирующей превращение ацетил-КоА в малонил-КоА запасания глицерина. Инсулин — потенциальный ингибитор липолиза в печени и жировой ткани (из-за уменьшения концентрации цАМФ нет эффективной активации триглицеридли-пазы). Он уменьшает концентрацию циркулирующих неэстерифи-цированных жирных кислот (ингибируют гликолиз и стимулируют глюконеогенез). [c.391]

    Витамин В4 илп Вр (холин, гидроокись 2-оксиэтилтриметил-аммония). Бесцветная вязкая жидкость солоновато-горького вкуса. Соль соляной кислоты холина, холин-хлор1вд — гигроскопическое кристаллическое вещество белого цвета с 70% чистого препарата имеет характерный запах аминов, легкорастворима в воде (МРТУ 42 № 1029—62). Холин синтезируется животным организмом из метионина — деривата метильных групп — и этаноламина при участии аденозинтрифосфорной кислоты. Принимает участие в окислительных процессах, в белковом и жировом обмене. Недостаток холина (растительные рационы, бедные метионином) задерживает рост у птиц, вызывает заболевание перозис (при недостатке марганца и никотиновой кислоты) у поросят задерживает рост, вызывает ожирение печени, изменение почек, ограничение гибкости суставов. Домашние птицы, особенно в период яйценоскости, нуждаются в непрерывном поступлении холина. Потребность в витамине у поросят и птицы повышается при высококалорийных рационах. [c.483]

    Под влиянием контринсулярных гормонов в этот период происходит обмен субстратами между печенью, жировой тканью, мышцами и мозгом. Этот обмен служит двум целям  [c.286]

    Биолог. Мне известно, что инсулин, используемый при лечении больных сахарным диабетом, не только ускоряет процессы утилизации глюкозы клетками, но и значительно интенсифицирует ряд других обменных процессов в организме, включая процессы синтеза белка в сердечной мьтще, а также в жировой ткани, печени и скелетных мьшщах [Руководство по физиологии, 1982], Если это так, то введение инсулина должно способствовать повьппению Параметра Подобия. Может бьггь, в этом и состоит причина наблюдаемого вами улучшения состояния инфарктных больных после назначения им инсулина  [c.89]

    Глюкокортиковды оказывают разностороннее влияние на обмен веществ в разных тканях. В мышечной, лимфатической, соединительной и жировой тканях глюкокортикоиды, проявляя катаболическое действие, вызывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот в то же время в печени они оказывают противоположное действие. Конечным итогом воздействия глюкокорти-коидов является развитие гипергликемии, обусловленной главным образом глюконеогенезом. [c.277]

    Пороговая доза АЬОз но влиянию на массу тела и содержание SH-rpynn в крови мышей — 300 мг/кг. Симптомы острого отравления — возбуждение, нарушение дыхания, обильное слюнотечение, ригидность хвоста и задних конечностей, тонические судороги на вскрытии — некроз слизистой желудка, жировая дистрофия печени. Однократное введение в желудок белым крысам А1СЬ нарушает обмен углеводов снижена концентрация гликогена печени, увеличена активность альдолазы сыворотки крови, кроме того, падает содержание в крови АТФ и возрастает АДФ и АМФ, что указывает на повреждение механизма фосфорнлирования. Минимальная действующая доза А. при поступлении через пищеварительный тракт составляет для крыс и морских свинок 17 мг/кг, для кроликов 9 мг/кг (Красовский и Др.). [c.212]

    Хроническое отравление. Введение М.С.Э. в рацион белых крыс уменьшает коэффициент использования кормового белка, повышает основной обмен и потребление воды. В жировых депо накапливаются эпоксикислоты. При добавлении к корму 1 % и выше в течение 2 лет задержка роста. Увеличение массовых коэффициентов печени и почек отмечено при 2,5%. Аналогичные эффекты отмечены при затравке собак (5%-ная добавка в рацион). Показатели крови и гистологическая картина внутренних органов — без особенностей (Larson). Никаких изменений не вызвала затравка крыс (16 месяцев) н собак (12 месяцев) 1,4 г/кг дважды в неделю (Krause). [c.143]

    Общим для всех клеток является наличие эндоплазматической сети, каналы которой связаны с мембранами, благодаря чему осуществляется обмен между ними. Кроме того, эндоплазматическая сеть является местом сосредоточения многочисленных ферментов, осуществляющих реакции окисления, гидролиза, восстановления и синтеза многих веществ. В опытах с гомогенатами печени млекопитающих и жирового тела насекомых было установлено, что именно ферменты эндоплазматической сети играют решающую роль в процессах превращения пестицидов. При этом независимо от вида реакции продукты ферментных превращений всегда оказываются более полярными и менее липидорастворимыми, чем исходные вещества. Таким образом, облегчается выделение их из организма. [c.23]

    Д. Влияние на метаболизм липидов. Липогенное действие инсулина уже рассматривалось в разделе, посвященном его влиянию на утилизацию глюкозы. Кроме того, инсулин является мощным ингибитором липолиза в печени и жировой ткани, оказывая, таким образом, непрямое анаболическое действие. Частично это может быть следствием способности инсулина снижать содержание сАМР (уровень которого в тканях повышается под действием липолити-ческих гормонов глюкагона и адреналина), а также способности инсулина ингибировать активность гормон-чувствительной липазы. В основе такого ингибирования лежит, по-видимому, активация фосфатазы, которая дефосфорилирует и тем самым инактивирует липазу или сАМР-зависимую протеинкиназу. В результате инсулин снижает содержание жирных кислот в крови. Это в свою очередь вносит вклад в действие инсулина на углеводный обмен, поскольку жирные кислоты подавляют гликолиз на нескольких этапах и стимулируют глюконеогенез. Данный пример показывает, что при обсуждении регуляции метаболизма нельзя учитывать действие лишь какого-либо одного гормона или метаболита. Регуляция—сложный процесс, в котором превращения по определенному метаболическому пути пред- [c.257]

    Биологическое действие. Витамин В,2 (цианкобаламин) участвует в синтезе нуклеиновых кислот и превращениях аминокислот, что приводит к активации синтеза белка, процессов роста и восстановления, т. е. проявляет наиболее сильное анаболическое действие. Он увеличивает количество эритроцитов и предупреждает жировую инфильтрацию печени (липотроп-ное действие), а также улучшает обмен аминокислоты метионина и влияет на процессы биологического окисления пировиноградной и уксусной кислот. [c.118]

    Инсулин синтезируется бета-клетками, регулирует обмен углеводов, жиров и белков. Действие на углеводный обмен связано с тем, что инсулин усиливает транспорт глюкозы из крови в скелетные мышцы, сердечную мышцу и жировую ткань за счет повышения проницаемости клеточных мембран этих тканей и стимулирует синтез гликогена в печени и мышцах. Таким образом инсулин снижает уровень глюкозы в крови, т. е. проявляет гипогликемический эффект. Инсулин стимулирует также синтез и депонирование жира в > ировой ткани, проникновение аминокислот в клетки и синтез из них белка. Следовательно, инсулин способствует запасанию питательных веществ, т. е. проявляет анаболическое действие. [c.143]

    Липидный обмен. При инкубации жировой ткани с ГР in vitro усиливается высвобождение неэстери-фицированных (свободных) жирных кислот и глицерола. Введение ГР in vivo вызывает быстрое (30—60 мин) повышение содержания свободных жирных кислот в крови и их окисления в печени. В условиях не- [c.175]


Смотреть страницы где упоминается термин Печень в жировом обмене: [c.320]    [c.204]    [c.194]    [c.319]   
Смотреть главы в:

Курс органической и биологической химии -> Печень в жировом обмене




ПОИСК







© 2024 chem21.info Реклама на сайте