Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебряные катализаторы

    Хотя основную часть ацетона получают путем окислительного расщепления изопропилбензола, в результате чего образуется не только ацетон, но и фенол, интересно отметить, что одно время большое количество ацетона производили дегидрированием изопропилового спирта. Этот процесс осуществляют в трубчатом реакторе (рис. 2) при 270 20°С на медно-цинковом или серебряном катализаторе. Обычно катализаторами являются эти металлы или их сплавы, нанесенные на огнеупорный материал. [c.152]


    Изложенный метод был использован при решении задачи оптимизации, промышленного процесса получения формальдегида окислительным дегидрированием метанола на серебряном катализаторе. [c.313]

    Формальдегид получают окислением метанола. В процессе, разработанном I. О., катализатором служат кристаллы серебра размером от 0,15 до 1,25 мм. Поток пара проходит через слой катализатора толщиной около 10 мм, при температуре 600 °С и избыточном давлении 0,35—0,70 ат. В других процессах используется серебряный катализатор в форме сетки. В одной промышленной установке была применена медная сетка. Используя в качестве катализатора железо, промотированное окисью молибдена, можно проводить процесс при более низких температурах (350—450 °С). [c.332]

Таблица 6. Энергии активации реакций селективного и полного окисления этилена на серебряном катализаторе (по данным [27]) Таблица 6. <a href="/info/15718">Энергии активации реакций</a> селективного и <a href="/info/330973">полного окисления</a> этилена на серебряном катализаторе (по данным [27])
    Соответствующим подбором катализатора необходимо ограничить возможность протекания реакции горения, выдвинув на первый план образование окиси этилена. Б настоящее время в промышленности применяются для этой цели серебряные катализаторы различных состава и способа приготовления. [c.185]

    В промышленности окись этилена получают двумя способами прямым окислением в присутствии серебряных катализаторов и посредством присоединения к этилену хлорноватистой кислоты и последующим удалением НС1 из полученного этилен хлор гидр ина.. [c.163]

    Наконец, важнейшую роль играет и сам катализатор, способ его приготовления и т, д. Добавление различных модификаторов нли применение смесей оксидов и солей способно сильно изменять активность и селективность контакта. Так, некоторые каталитические яды (галогены, селен), дезактивируя серебряный катализатор окисления этилена, существенно повышают его селективность. Оксиды молибдена и висмута, в индивидуальном виде вызывающие полное сгорание олефинов, в форме молибдата висмута (В120з МоОз = 1 2) являются селективными катализаторами гетерогенного окисления пропилена. Большое влияние оказывают носитель, размер зерен катализатора, его пористость и т. д. Ввиду возможности последовательного окисления целевого вещества и высокой скорости самой химической реакции на поверхности катализатора переход процесса во внутридиффузиоиную область весьма нежелателен, поэтому используют катализаторы с небольши.ми зернами и сравнительно крупными порами. [c.416]


    Участие поверхности в парофазном частичном окислении парафиновых угловодородов заключается обычно либо в образовании активных центров, либо в разрушении некоторых активных центров. Имеется много данных, свидетельствующих о протекании на поверхности раз-.личных реакций рекомбинации радикалов. С другой стороны, образование продуктов частичного окисления почти никогда но происходит в результате процессов хемисорбции парафиновых углеводородов и -кислорода на каталитической поверхности с последующей химической трансформацией на поверхности и десорбцией, образовавшихся стабильных продуктов в газовую фазу. Реакции, подобные конверсии этилена до окиси этилена на серебряных катализаторах, не обнаружены в случае окисления парафиновых углеводородов. Вместо этого такие обычные катализаторы окисления, как например, окислы металлов переменной валент- [c.320]

    Реактор вытеснения, близкий по своим характеристикам к модели идеального вытеснения, несомненно, даст выход не намного меньший, чем в периодическом процессе. Такие реакторы используют для многих реакций рассмотренного типа, например, при окислении метанола на серебряном катализаторе, при производстве этилхлорида и т. д. [c.110]

    Окись этилена образуется при окислении воздухом этилена на серебряном катализаторе, температуре 205—315 °С и давлении 7—21 а/п в неподвижном или псевдоожиженном слое катализатора. [c.332]

    В последнее время много внимания уделяется характеристике поверхности серебряных катализаторов и установлению соотношений между ней и кинетикой образования окиси этилена. Интересные результаты были получены при измерении скорости адсорбции кислорода. Было установлено, что время, необходимое для адсорбции лишь 20% от количества кислорода, которое адсорбируется при полном насыщении, очень мало (1 мин), тогда как адсорбция остальных 70% протекает значительно медленнее (8 мин, т. е. в 80 тыс. раз больше). / [c.165]

    После первых патентов [95] селективность и стабильность серебряных катализаторов удалось улучшить с помощью различных добавок. Часто в качестве стабилизаторов использовались ВаО и СаО [96, 97], но наиболее поразительные результаты получены с металлоидными промоторами (С1, Вг, S, Se, Те), вводимыми или в катализатор, или в исходный материал. Эти промоторы снижают скорость реакции, но увеличивают селективность [96—98] до оптимального значения. Твер- [c.165]

    Предложены многочисленные модификации серебряного катализатора для окисления этилена. В качестве носителей указаны пемза, силикагель, оксид алюминия, смеси силикагеля и оксида алюминия, карбид кремния и др. Как активаторы и добавки, повышающие селективность, рекомендованы сурьма, висмут, пероксид бария. Интересно, что введение небольшого количества дезактивирующих примесей (сера, галогены) увеличивает селективность действия серебра, причем эти вещества лучше добавлять в реакционную смесь непрерывно, возмещая их расход на окисление. Практическое значение приобрела добавка 0,01—0,02 масс. ч. дихлорэтана на 1 масс. ч. этилена с такой добавкой селективность процесса повышается примерно на 5%. [c.434]

    Синтез формальдегида осуществляется на основе метанола либо каталитическим окислением в паровой фазе, либо последовательным окислением и дегидрированием [114]. Каталитическое окисление смеси паров метанола и воздуха проводится в стационарном слое катализатора при атмосферном давлении. Так как метанол и воздух образуют взрьшоопасные смеси при концентрации 6—37% (об.) метанола пр температуре 60 °С, то промышленные процессы ведутся при концентрациях метанола около 50% (об.) В двухстадийном процессе используется серебряный катализатор, и обе реакции протекают одновременно [c.263]

    Следует отметить, что явления отравления используют на практике а для улучшения свойств катализаторов. Поскольку действие яда неодинаково сильно сказывается на различных реакциях, протекающих на данном катализаторе в данной реакционной системе, создается возможность применять так называемое селективное отравление для повышения избирательности катализатора. Широко известно, например, селективное отравление серебряных катализаторов галогенами, когда реакция полного окисления этилена подавляется сильнее, чем реакция образования окиси этилена, и изби- [c.56]

    Оксид этена СНг—СНг получают окислением этена воздухом в присутствии серебряного катализатора. Поток сырья поступает в реактор при 7=463 К и содержит 1 моль этена и 19 моль воздуха (95% воздуха). Температура на выходе из реактора равна 533 К. Превращение этена в оксид составляет 40%, сгорает этена 50°/о и непрореагировавшим остается 10%. Определить количество теплоты, которое необходимо удалить из системы на 1 моль взятого в реакцию этена для того, чтобы температура в реакторе не поднималась выше 533 К. [c.279]

    Реакция окисления СН4 при 7=573 К в воздушной среде в присутствии серебряного катализатора может проходить по двум реакциям  [c.279]

    При 77,5 К на серебряном катализаторе была снята изотерма адсорбции криптона, которая характеризуется следующими данными  [c.340]

    В качестве носителей серебряных катализаторов используют окись алюминия, окись бериллия, силикагель, пемзу и т. д. При приготовлении катализаторов на носителях последние пропитывают водными растворами нитрата серебра с последующим прокаливанием. Полученный катализатор восстанавливают до металлического серебра. При отравлении катализатора сернистыми соединениями его регенерируют водородом, газообразным аммиаком, парами окиси этилена, разбавленными воздухом или инертным газом. [c.172]


    Дегидрогалогенирование этиленхлоргидрина над известью приводит к образованию окиси этилена, но наибольшее количество этого соединения в настоящее время получают непосредственным окислением этилена над серебряным катализатором. Окись этилена — очень нужное промежуточное соединение для синтеза большого числа органических веществ. Эта окись вступает в реакцию с водой, образуя этнленгликоль, диэтиленгликоль и т. д. вплоть до нолиэтиленгликолей с длинной ценью и молекулярнынг весом, достигающим 6000. Полезный растворитель, диоксан, получается дегидратацией диэтиленгликоля. [c.580]

    Для испытаний использовался специально приготовленный износоустойчивый серебряный катализатор [6 , 65 с различным содержанием серебра (на алюмосиликате 10—12% Ag, на силикагеле ШСК - 18-23%). [c.163]

    Захтлер [25] оспаривал полученные в работах [23, 24] доказательства существования молекулярного, т. е. двухатомного, кислорода на поверхности серебра, но более позднее исследование [26] с помощью эмиссионного микроскопа показало, что при очень низких давлениях на поверхности серебра присутствует и атомарный, и молекулярный кислород. Другие авторы пришли к тому же заключению, и, несмотря на противоречия в некоторых деталях, есть основания считать, что на поверхности серебра присутствует молекулярный кислород. Это важно для рассмотрения механизма образования окиси этилена на серебряном катализаторе. [c.228]

    Серебряные катализаторы, приготовленные для производства окиси этилена, подвергают химическому анализу, исследуют их физические свойства и испытывают в лабораторном реакторе их каталитическую активность. [c.240]

    Оптимальный состав катализатора, обеспечивающий высокую избирательность, можно получить и другим способом катализатор находится в неподвижном состоянии, но изменяется по определенному закону состав газовой фазы на входе в реактор. Так, на опытной установке был осуществлен процесс окисления этилена на серебряном катализаторе [51], где периодически изменялась начальная концентрация этилена. При определенных частотах изменения состава было получено значительное увеличение избирательности. По данным А. В. Хасина, скорость образования [c.17]

    Металлиламин в присутствии водяного пара и серебряного катализатора при 450—600° может окисляться воздухом в метакрилопитрил с почти 90%-ным выходом [4]. Последний является важнейшим исходным материалом для получения метакриловой кислоты. До сих нор метакрилопитрил в промышленных условиях получался почти исключительно из ацетона я синильной кислоты, через циангидрин  [c.171]

    Исследования показали, что скорости реакций окисления метанола и формальдегида на серебряном катализаторе во взвешенном слое во много раз превышают скорости дегидрирования тех же продуктов. [c.164]

    Применяемые в промышленности катализаторы можно разделить на две основные группы сплошные серебряные катализаторы, активное серебро на носителе. [c.172]

    Продукты окисления. Наиболее распространенным промышленным процессом окисления олефина является окпсление этилена, который окисляется воздухом над серебряным катализатором при температурах 225—325° С и дает чистую окись этилена (побочных продуктов, кроме воды и двуокиси углерода, не получается). Выход окиси этилена колеблется в пределах 55—70% [279—281]. Аналогичные окислы высших олефинов можно получить из пропилена, бутадиена, октена, додецена и стирола через промежуточную стадию хлоргидрина или нри номош и реакции с надуксусной кислотой. Промышленное значение пока приобрело только производство окиси пропилена. [c.582]

    Значительное количество ацетона производится каталитическим окислением изопропилового спирта. В этом процессе изопропанол смешивается с воздухом и направляется в peaiK-тор, в котором при температуре 500°С и давлении 4-10 Па на медном или серебряном катализаторах проводится реакция [c.277]

    Если получение окиси этилена с давних пор осуществляли прямым окислением на серебряных катализаторах, то современное производство окиси пропилена все еще базируется на классическом методе хлоргидрирования. Выход окиси пропилена нри прямом окислении пропилена до сих пор остается незначительным, хотя работы по исследованию этого процесса начались свыше 30 лет назад  [c.76]

    До сих иор не удалось окислить пропилен в окись пропилена на серебряных катализаторах с таким же хорошим выходом, как в случае превращения этилена в окись этилена. При 130—260 °С и времени контакта 0,6—6 с получали менее чем 0,07% окиси пропилена [29, 301. Основными продуктами реакции были СО2 и вода. Введение промоторов должно улучшать выход. Для этого рекомендуются добавки СиО к катализатору из AgjO в этом случае при 160—180 °С получается окись пропилена, при повышении температуры — акролеин [31]. Были предложены катализаторы на основе Ag/Au и Ag/Au/ u [32]. [c.81]

    Задача 4.9. Для получения форма.аь.чсгпда метиловый спирт необходимо окислить на серебряном катализаторе ( НзОН + 0,5О2 = НСНО+Н2О. Кроме этой основной реакции протекают и побочные, в результате которых об-ра уются муравьиная кислота, оксид углерода (IV), м -тап и другие продукты. [c.53]

    Высокая степень конверсии процесса обусловлена избирательной активностью серебряного катализатора, который пока является единственным, применяемым для этих целей. В зависимости от метода получения катализатор может содержать промоторы (оксалат натрия, Pt, Pd, BaO, aO, LiBr), находиться на различных носителях (кремнеземе, окиси алюминия, углеродистом кремнии), работать с частичным (избирательным) отравлением серой пли хлористым этилом. [c.165]

    Во многих случаях удельная активность, в зависимости от температуры предварительного прокаливания катализатора, имеет максимум. На рис. XIII, 4 показан пример подобной зависимости для серебряных катализаторов разложения муравьиной кислоты. В то время как общая поверхность катализатора в результате термического роста кристаллов закономерно уменьшается с увеличением температуры двухчасового предварительного прогрева, удельная активность имеет отчетливый максимум примерно при 600° С. [c.338]

    Рис, XIII, 4. Зависимость удельной активности и удельной поверхности серебряного катализатора от температуры предварительного прокаливания. [c.338]

    Реагируя с аммиаком, хлористый аллил образует аллиламин, который при окислении на серебряном катализаторе дает хороший выход акрилонитрила. Путем конденсации эпихлоргидрина с бисфенолом получают эпоксидные смолы, а из них изготавливают эпикот. Эпикотовые краски находят большой сбыт. [c.77]

    Оптамнзация промышленного процесса получения формальдегида окяс-.1ите.1ьным дегидрированием метанола на серебряном катализаторе с учетом самоорганизации [86]. Процесс самоорганизации, рассматриваемый на уровне химико-технологической системы, состоит в проявлении кооперативного действия мод и упорядочения, определяемого параметрами порядка [86], при этом образуются диссипативные структуры. Устойчивые состояния соответствуют некоторым точкам в фазовом пространстве координат системы (технологические режимы, конструктивные характеристики аппаратов). Эти состояния будем называть центрами самоорганизации. [c.312]

    Процесс ведется на серебряном катализаторе для поддер жания высокой активности и селективности катализатора необходимо отсутствие в исходных продуктах примесей, отравляющих катализатор. Серебряный катализатор очень чувствителен к сернистым, мышьяковым, фосфорным галоидным соединениям и к ацетилену. Даже следы этих веществ отравляют катализатор, а ацетилен, кроме того, образует взрывоопасный аце-тиленид серебра. [c.316]

    Смесь этилена, воздуха, рециркулирующего газа (3—5% (об.) этилена] компримируется в 1 до (9—22)-10 Па и направляется в контактный аппарат 2 — реактор с неподвижным слоем серебряного катализатора (рис. 1Х-7) [110]. Для поддержания температуры в пределах 104—149 °С используется циркулирующий газ. Выделяющийся из реакторов газ охлаждается в теплообменнике и компримируется в 3. Охлажденный газ направляется в скруббер 4, в котором втиленоксид промывается водой. Неабсорбированный газ представляет собой в основном непрореагировавшие этилен и кислород. Часть этой смеси возвращается в реактор, а другая часть нагревается в теплообменнике и направляется во второй реактор 5, где завершается процесс окисления. Продукты реакции подаются в скруббер 6, где этиленоксид абсорбируется водой. Несконден-сировавшиеся газы подвергаются в дальнейшем очистке. Разбавленные растворы этиленоксида в воде из обоих скрубберов [c.270]

    Серебряный катализатор — эффективный высокоизбирательный катализатор, однако необходимо следить за поддержанием температуры в реакторе в достаточно узком интервале, так как селективность процесса резко понижается с повышением температуры. Для эффективного решения проблемы теплосъема большое значение имеет также выбор носителя для катализатора. Разработан ряд методов замедления реакции окисления этилена в диоксид углерода. В качестве ингибиторов предложено несколько соединений, но лишь ДХЭ и полихлорароматические продукты эффективны при использовании в промышленных масштабах. [c.271]

    В реактор загружено 0,5 моль этанола и 1,5 моль Ог. Смесь начинает окисляться в присутствии серебряного катализатора при начальной температуре 298 К и P= onst. Реакция затем проводится до полного окисления спирта до СОг и НгО. Определить конечную температуру для адиабатических условий [c.280]

    Дегидрирование обогащенных метанолом смесей осуществляют на серебряном катализаторе (обычно в виде сетки) в реакторе, изображенном на рис. 6. Как правило, реактор помещают над теилообменником, который является также иарогене-ратором. В нем продукты реакции охлаждаются от 650—700 °С до приблизительно 150 °С. Одновременно образуется большое [c.154]

    Режимы окислительных процессов также разнообразны. Окисление аммиака на платине и метанола на серебряном катализаторе — примеры внешнедиффузионной области процесса. Внутридиффузион-ный режим характерен для процесса окисления сернистого газа на ванадиевых катализаторах. Ряд окислительных процессов протекает в кинетической области, особенно если они происходят в кипящем слое катализатора. [c.137]


Библиография для Серебряные катализаторы: [c.27]   
Смотреть страницы где упоминается термин Серебряные катализаторы: [c.280]    [c.493]    [c.175]   
Химический энциклопедический словарь (1983) -- [ c.523 ]

Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.31 , c.36 , c.46 , c.74 , c.109 , c.160 , c.166 , c.167 , c.296 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.523 ]




ПОИСК







© 2024 chem21.info Реклама на сайте