Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроокисление,

    ХОД электроэнергии при промышленном электролитическом получении водорода и кислорода. Реакция образования кислорода играет важную роль практически во всех анодных процессах при электролизе водных растворов и в первую очередь в реакциях электроокисления неорганических и органических веществ. Однако механизм анодного выделения кислорода до сих пор не совсем ясен. [c.421]


    Электрохимические реакции, за исключением простейших реакций электроокисления и электровосстановления (электролитическое растворение или образование металлической фазы), являются чрезвычайно сложными. [c.631]

    Реакции электровосстановления и электроокисления 631 [c.631]

    Иа изложенного следует, что в одном иа двух полуэлементов должно всегда происходить электроокисление, а в другом -электровосстановление, чтобы в замкнутой цепи протекал ток. Эти процессы в отдельности представляют собой происходящие на электродах полуреакции, сумма которых дает общую реакцию в ячейке в целом. Возникновение потенциала является следствием именно протекающей на электроде полуреакции, характер которой обусловливает и величину потенциала. [c.126]

    Понятие о деполяризации было введено первоначально в связи с тем, что процесс электровосстановления считался невозможным без участия активного водорода, точно так же, как и процесс электроокисления не мыслился без участия в нем активного кислорода. Связывание этих активных форм водорода (или кислорода) при [c.429]

    При данном значении потенциала электрода скорость процесса электролитического восстановления (или окисления) обычно растет с увеличением концентрации разряжающи.хея частиц. Однако такая простая зависимость наблюдается не всегда. В кинетических уравнения.ч, описывающих реакции электровосстановления (или электроокисления), концентрации исходных веществ могут входить со степенями, большими единицы, равными нулю или правильной дроби. В уравнеиия, описывающие кинетику электровосстановления органически.х соединений, их объемная концентрация в.ходит обычно в дробной степени. [c.434]

    По существующим представлениям электроокисление может происходить или при помощи промежуточных окисляющих агентов — адсорбированного кислорода, кислородных соединений металлов и свободного гидроксила, получающихся при разряде ионов ОН", или путем отщепления электрона от самой окисляемой молекулы. Так, показано, что механизм электроокисления сульфат-иона в персульфат-ион является электронным  [c.634]

    Полярографический метод, предложенный чешским ученым Гейровским (1922 г.), состоит в проведении электролиза исследуемых растворов в электролитической ячейке (электролизере), одним из электродов которой служит капельный ртутный электрод. Последний может служить как катодом (при изучении процессов электровосстановления), так и анодом (если исследуются растворы, содержащие способные к электроокислению вещества). [c.642]


    Потенциостатическое определение Ре + основано на его электроокислении в кислых растворах до Ре + при контролируемом потенциале платинового рабочего электрода ( + 0,95 В относительно хлорсеребряного электрода сравнения)  [c.177]

    В самом деле, если электроду, погруженному в раствор, содержащий оба компонента одной и той же редокс пары, сообщить несколько больший или меньший потенциал, чем ее значение равн цепи может возникнуть измеримой величины ток. Это сопровождается увеличением концентрации в первом случае окисленного компонента за счет электроокисления восстановленной формы редокс пары, во втором - восстановленного (за счет восстановления окисленной формы). Хотя всегда [c.12]

    Достаточно селективно (предпочтительно в присутствии переносчиков кислорода) протекает электроокисление нафталина с образованием фталевой кислоты [c.221]

    Белый пигмент свинцовые белила получают электроокислением металлического свинца по реакции  [c.196]

    Повышение анодной плотности тока способствует процессу электроокисления ионов Н50 а максимальный выход по току НгЗгОв достигается при плотности тока порядка 10 кА/м . Однако промышленная плотность тока составляет 5 кА/м , хотя это и означает снижение скорости процесса. Решающее влияние на оптимизацию плотности тока оказывает реакция электрохимического растворения платинового анода, которая становится тем ощутимее, чем выше анодный потенциал. Другой причиной, не позволяющей вести электролиз при слишком высокой плотности тока, является заметное возрастание удельного расхода электроэнергии. Это обстоятельство существенно, если учитывать высокую энергоемкость технологического процесса. [c.186]

    Цель работы — изучить влияние природы спирта, температуры и плотности тока на эффективность электроокисления спиртов и выход по веществу и току соответствующих карбоновых кислот. [c.208]

    Все электродные процессы можно разделить на две группы процессы электровосстановления и процессы электроокисления. Если электроны переходят от электрода к частицам, содержащимся в растворе или расплаве, то такие процессы называются катодными процессами или процессами электровосстановления. Если же электроны переходят от частиц на электрод, то протекает анодный процесс, или процесс электроокисления. [c.143]

    Вторым способом массопереноса служит перенос частиц под действием электрического поля. Так как раствор электролита обладает некоторым омическим сопротивлением, то при протекании через него тока возникает омическое падение потенциала, под действием которого скорость движения ионов изменяется. Это явление называется миграцией. Миграция наблюдается только для заряженных частиц. В процессах электровосстановления миграция облегчает подход катионов и замедляет подход анионов к электроду. В процессах электроокисления наблюдается обратная картина. [c.148]

    При помощи вращающегося дискового электрода можно определить число электронов п, участвующих в электродном процессе, что особенно важно при установлении механизма реакций, протекающих с участием органических веществ. Если коэффициент диффузии реагирующего вещества известен, то п определяется по величине предельного диффузионного тока. Величину п можно оценить также, например, из сравнения предельных диффузионных токов для исследуемого вещества и какого-либо другого близкого по строению (а следовательно, и по величине О) вещества, механизм электровосстановления или электроокисления которого известен. [c.171]

    Образование окисных или солевых слоев влияет не только на анодное растворение металлов, но приводит и к ингибированию многих других электродных процессов. Так, при адсорбции кислорода на платине замедляется скорость ионизации молекулярного водорода в сернокислых растворах. Такое же влияние оказывает адсорбированный кислород и на электроокисление различных органических веществ (метанола, этанола, этилена и др.). На рис. 198 представлены тафелевские зависимости для анодного выделения кислорода на платиновом электроде из растворов хлорной кислоты. При достижении определенной плотности тока происходит резкий рост перенапряжения и выход о Т Г [c.373]

    При электроокислении органических веществ на металлах, адсорбирующих кислород, также возможны прямой переход электрона от адсорбированных молекул органического вещества к электроду (электрохимический механизм) и взаимодействие адсорбированных веществ с частицами ОН д или другими формами адсорбированного кислорода (химический механизм). Окисление органического вещества с участием адсорбированного кислорода можно представить следующей схемой  [c.384]

    Подобных же отклонений от ПНПСР следует ожидать и в других случаях. Например, при протекании реакций электровосстановления или электроокисления, когда изменение кинетики частных реакций может быть обусловлено не только химическим взаимодействием их продуктов, но и иными причинами. Так, если восстанавливаемое соединение или продукт его восстановления способны адсорбироваться на электроде, то перепапряжение водорода может существенно измениться по сравнению с чистым раствором (не содержащим органического вещества) при той же плотности тока (или неизменная величина потенциала электрода будет соответствовать разным значениям плотности тока). Тем не менее и здесь оба принципа — ПНПСР и ПСПК — оказываются полезными, так как позволяют получать дополнительные сведения о процессе протекания совмещенных реакций. [c.389]


    Как радикал, так и адсорбированный водород могут затем подвергаться дальнейшим нревращепиям. На металлах второй группы электроокисление тех же веществ не проходит через стадию предварительной дегидрогенизации. [c.443]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    ТОЛЬКО С ПОМОЩЬЮ специальных добавок, но и самими ее участниками— свободными радикалами и другими активными частицами, способными инициировать развитие цепного превращения. В ходе реакции электроокисления могут возникать промежуточные соединения, играющие роль автокатализатора процесса (Н. Е. Хомутов). [c.444]

    Кулонополярографический газоанализатрр типа ГКП-1 предназначен для определения концентрации сернистого ангидрида в воздухе производственных помещений. Действие прибора основано на использовании метода поглощения сернистого газа раствором иода с последующим электроокислением образующихся иодид-ионов. [c.263]

    В этом можно было убедиться на примере рассмотренной пыше реакции разряда ионов гидроксония. Эта реакция кажется одной из самых простых, но механизм ее оказывается довольно сложным. Тем более сложны электрохимические реакции с участием органических молекул. В связи с этим, а также из-за отсутствия достаточно" эффективных комплексных методик, позволяющих хотя бы до некоторой степени охватить псе промежуточные стадии сложного электрохимического процесса, наши сведения об истинном механизе реакций электровосстановления и электроокисления довольно скудны. [c.631]

    До недавнего времени общепринятыми являлись представления о том, что электровосстановление и электроокисление, в частности, органических соединений происходит за счет атомного (адсорбированного) водорода или кислорода, образующихся на электродах при электролизе. Согласно этим представлениям электрохимический процесс сводится к получению атомного кислорода или водорода, а собственно процесс электросинтеза считается обычным химическим процессом гидриро-нания или окисления. [c.632]

    В ряде случаев необратимость системы настолько велика, что только один ее компонент является электроактивным, т.е. способным окисляться или восстанавливаться на электроде под действием тока. Другой же сопряженный компонент электронеак-тивен. Это явление связано с тем, что вода (или другой растворитель) и ее ионы также способны к электрохимическим реакциям, лимитирующим область потенциалов, в пределах которой имеют место процессы электроокисления и восстановления лишь растворенньге веществ. Таким образом, в электродных реакциях не могут участвовать те компоненты реяцкс пар, которые способны восстанавливаться или окисляться при более отрицательных и соответственно более положительных значениях потенциала, чем потенциалы электродных процессов растворителя, в частности воды или ее ионов (рис. 3), отвечающих следующим уравнениям катодные процессы [c.16]

    Рассматривая вышеуказанным способом возможность электрохимического окисления находящихся в растворе компонентов на анодно поляризованном ( /3 а платиновом электроде, приходим к выводу, что легче всего электроокислению могут подвергаться до т.э. ионы Ввиду уменьшения их концентрации по мере титрования потенциал электрода ( д ) постепенно сдвигается в более положительную область потенциалов. Еще до Т.Э., как только концентрация ионов Ре " уменьшится настолько, что его предельный ток ( - р5 2+ч) станет меньше тока анодной поляризации ( ). э и ионы больше Ме могут обеспечить полностью электродньгй процесс.. Поэтому в электрохимической реакции начинают принимать участие другие компоненты, а именно в данном случае молекулы Н2О, окисляясь до О2. Вследствие этого индикаторный электрод принимает новое, бо-. лее положительное значение потенциала ( -гг ),что сопровождается достаточно резким скачком ЛЕ = 1сд , отвечающим к.т.т. Скачок в данном случае пред111ествует т.э., тем саМым обусловливает небольшую, но систематически отрицательную погрешность титрования. [c.188]

    Для получения органических соединений используют как электроокисление, так и электровосстановление на аноде, например, получают себациновую кислоту, тетраалкильные производные свинца, фтороорганические соединения и другие окисленные формы органических веществ а на катоде — анилин, адипони-трил и другие восстановленные формы органических веществ. [c.252]

    При формировании положительной пластины на первой стадии происходит взаимодействие трехосновного сульфата свинца и оксида свинца с серной кислотой с образованием сульфата свинца, а также частичное электроокисление РЬО и ЗРЬО--РЬ504-Н90 до диоксида свинца. На второй стадии сульфат свинца анодно окисляется до РЬОг. Процесс осложнен явлением полиморфизма диоксида свинца образование а- и р-РЬОг протекает параллельно, но их соотношение на поверхности и в глубине пластины неодинаково и зависит от условий формирования, исходного состава пасты и других факторов. [c.214]

    Как следует из уравнения (46.7), при электроокислении катионов и переходе через п. н. з. должен наблюдаться спад анодного тока, аналогичный спаду катодного тока при электровосстановлении анионов (Л. Гирст). [c.267]


Смотреть страницы где упоминается термин Электроокисление,: [c.316]    [c.436]    [c.446]    [c.452]    [c.626]    [c.633]    [c.33]    [c.303]    [c.269]    [c.339]    [c.380]   
Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте