Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активаторы полимеризации капролактама

    Технологическая схема периодического процесса полимеризации капролактама в капрон (рис. 4). Твердый капролактам подается в расплавитель 1. В расплавленный капролактам вводят стабилизаторы и активаторы (вода, соль АГ, адипиновая и уксусная кислоты). Хорошо перемешанный с добавками расплав передавливается сжатым азотом через фильтр 8 в автоклав-полимери-затор 6 до заполнения 65 —75% его объема. В течение 2—3 ч автоклав разогревается. В этот период давление водяного пара, который образуется при испарении воды, содержаш,ейся в капролактаме, повышается. Давление в автоклаве устанавливают равным (10—12) 10 н1м и поддерживают его постоянным в течение 1 ч. При температуре 529° К (256° С) в течение 3— [c.13]


    Ниже приводится описание технологических схем полимеризации 8-капролактама при атмосферном давлении и под давлением. Технологическая схема непрерывного процесса полимеризации е-капролактама при атмосферном давлении представлена на рис. 13. При осуществлении процесса по этой схеме, являющейся классической, предусмотрена эвакуация НМС из гранулята. Распыленный в расплавителе 1 е-капролактам периодически подается в бак-мешалку 2, где он смешивается с активатором и стабилизатором. Тщательно перемешанный расплав поступает затем в бак 3, откуда непрерывно подается в аппарат полимеризации 6 через фильтры 4 и дозирующее устройство 5. Для обогрева используют горячую воду с температурой 95—100°С, подаваемую в нагревательные рубашки. Дозирующее устройство 5 позволяет в случае получения окрашенного или матированного полимера производить автоматическую подачу раствора красителя или суспензии мати- [c.52]

    Периодический процесс полимеризации. Капролактам, применяемый для полимеризации, предварительно расплавляется при 85—90 °С в специальном аппарате — расплавителе. В этом аппарате, снабженном рубашкой и мешалкой, проводится перемешивание капролактама с активатором и стабилизатором. Затем реакционная смесь отфильтровывается под давлением азота (1,5—2 ат) через ткань на обогреваемом керамическом или стеклянном фильтре и подается в автоклав. [c.41]

    Очень эффективными активаторами полимеризации капролактама являются аминокислоты. В присутствии этих соединений полимеризация капролактама протекает без индукционного периода, благодаря чему значительно ускоряется процесс. Под действием аминокислот капролактам полимеризуется при нормальном давлении. Существенное влияние на скорость полимеризации оказывает состав аминокислоты. [c.35]

    Периодический процесс полимеризации. Капролактам, применяемый для полимеризации, предварительно расплавляют при 85— 90 °С в специальном аппарате — расплавителе. В этом аппарате, снабженном рубашкой и мешалкой, проводится перемешивание капролактама с активатором и стабилизатором.-Затем реакционная смесь отфильтровывается под давлением азота через ткань на обогреваемом керамическом или стеклянном фильтре и подается в автоклавы или более совершенные аппараты — так называемые трубы НП (непрерывной полимеризации), преимущественно применяемые в настоящее время. [c.40]

    Полимеризацию е-капролактама в присутствии воды осуществляют в аппаратах периодического и непрерывного действия. Расплавленный е-капролактам смешивают с добавками активаторов и стабилизаторов и подают в аппарат полимеризации. Используемая в качестве активатора вода в значительной степени ускоряет полимеризацию. Стабилизаторами, применяемыми для регулирования молекулярной массы получаемого полимера, обычно служат уксусная или адипиновая кислоты, а также различные амины и бифункциональные соединения. Полимеризацию в присутствии воды ведут как под повышенным, так и под атмосферным давлением. При рассмотрении кинетики процесса полимеризации е-капролактама отмечалось, что полученный полимер содержит некоторое количество мономера и низкомолекулярных соединений, которые необходимо удалить. В различных технологических схемах этот вопрос решается различными способами мономер и низкомолекулярные соединения удаляют либо из гранулята твердого полимера путем экстракции водой или другими растворителями, либо из расплава путем вакуумирования. [c.49]


    Найлон 6 и найлон 12 получают полимеризацией е-капролак-тама и е-додекалактама. Полимеризация лактамов проводится гидролитически при нагревании с водой и уксусной кислотой или каталитически в присутствии щелочных металлов и активаторов (К-ацетил-б-капролактам) при полном отсутствии воды. Каталитическую полимеризацию используют только для получения литых изделий (капролон). [c.248]

    Капролактам расплавляют и растворяют. В растворитель добавляется 5—10 вес. % от массы лактама дистиллированной воды, играющей роль активатора реакции полимеризации. По окончании растворения вводят около 1% уксусной кислоты в качестве стабилизатора, регулирующего молекулярный вес полимера. Затем раствор фильтруется и подается на полимеризацию в стальной [c.564]

    Капролактам полимеризуется в присутствии воды при нагревании, образуя полиамид. Молекулярный вес образующегося полимера тем больше, чем ниже температура и чем меньшее количество воды взято в качестве активатора процесса. Полимеризацию капролактама можно проводить в присутствии солей щелочных и щелочноземельных металлов, металлического натрия, а также моно- и дикарбоновых кислот и их солей с диаминами. [c.157]

    Перед полимеризацией хорошо очищенный капролактам расплавляется в дистиллированной воде, составляющей 3,5—4% веса капролактама. Вода, как уже было указано, служит активатором реакции превращения капролактама в полимер. [c.577]

    Технический капролактам, предназначенный для производства волокна, представляет собой белое кристаллическое вещество. Капролактам упаковывают в полиэтиленовые или бумажные мещки весом по 30 кг. Склады для хранения капролактама должны быть сухими и теплыми. Подготовка капролактама к полимеризации заключается в очистке его от механических примесей и внесении необходимых добавок. Для проведения этих операций капролактам расплавляют. Полимеризация капролактама происходит только при высокой температуре и в присутствии активаторов — воды, уксусной кислоты, соли АГ или др-Поликапролактам при высокой температуре очень чувствителен к воздействию кислорода и другим химически активным веществам. Предотвращение окисления полимера на всех стадиях технологического процесса осуществляют путем защиты всего производственного оборудования негорючим газом—азотом с содержанием в нем кислорода не более 0,003—0,0005%. По условиям [c.137]

    При периодическом процессе полимеризации капролактама твердый е-капролактам сначала расплавляют при 80—85 °С и вводят при перемешивании в расплав добавки — активатор и стабилизатор— обычно воду и уксусную кислоту. Тщательно перемешанный расплав через фильтр сжатым азотом передавливается в полиме- [c.49]

    Для непрерывной полимеризации е-капролактама применяют прямоточные вертикальные трубчатые реакторы внутренним диаметром 0,2—0,8 м, высотой 5—12 м и объемом до 2 и и-образные реакторы, работающие по принципу сообщающихся сосудов. Продолжительность процесса в них составляет 5—6 ч. В первую секцию и-образного реактора, нагретого до 240— 250 °С, загружают расплавленный капролактам вместе с активаторами— водой и солью АГ при температуре 75—90 °С (рис. 2.12). Для уменьшения продольного перемешивания рас- [c.30]

    Очень эффективными активаторами процесса полимеризации капролактама являются аминокислоты. В присутствии аминокислот полимеризация капролактама протекает без индукционного периода, благодаря чему значительно ускоряется процесс. Под действием аминокислот капролактам полимеризуется при нормальном давлении. С -щественное влияние на скорость полимеризации оказывает состав аминокислоты . Из исследованных алифатических аминокислот, содержащих различное число метиленовых групп (4—8), максимальной активностью обладала аминопеларгоновая кислота и минимальной — аминовалериановая кислота. Аминокислота добавляется в количестве 1,5—3% от веса капролактама. [c.35]

    Поэтому важное практическое значение имеет соотношение содержания воды на первых и последних стадиях полиамидирования, обеспечивающее проведение всего процесса за минимальное время. Предусматривается своевременное удаление воды из сферы реакции с целью торможения процесса гидролиза амидных связей и достижения высокой степени полимеризации. Однако это может привести к образованию полимера с увеличенной средней молекулярной массой, который не может быть использован для формования волокна. Средняя степень полимеризации поликапроамида, как уже указывалось выше, должна быть в пределах 130—200 средняя молекулярная масса — 15 000—23 000. Для того, чтобы получить полимер такой молекулярной массы, нужно вовремя прервать процесс амидирования. Для этого применяют реагенты, ограничивающие (регулирующие) степень полимеризации, которые называют регуляторами. Их добавляют в капролактам вместе с активаторами перед загрузкой в аппарат для полиамидирования. В качестве регуляторов могут быть использованы вещества, способные присоединяться к одной или обеим концевым группам поликапроамида и блокировать их. Для блокировки аминогрупп обычно используют карбоновые кислоты, которые, присоединяясь к поликапроамиду, образуют замещенные амиды  [c.29]


    Другим распространенным видом миграционной полимеризации, протекающей также по ступенчатому механизму без образования активных центров, является так называемая гидролитическая полимеризация под действием воды, кислот, спиртов и других соединений, содержащих подвижный атом водорода. Эти соединения (активаторы) необходимы только в начале процесса для образования в системе вешеств с функциональными группами, способных взаимодействовать с мономером. Гидролитическая полимеризация характерна для мономеров, содержащих карбонильные группы (формальдегид), и для гетероциклических соединений (окись этилена, окись пропилена, е-капролактам и др.). [c.123]

    Полиамидное волокно капрон получается из смолы капрон, исходным сырьем для которой служит лактам е-амино-капроновой кислоты—капролактам. Последний вырабатывается в виде белого порошка из фенола, бензола или циклогексана. Капролактам расплавляют и растворяют. В растворитель добавляют 5—10% от массы лактама дистиллированной воды, играющей роль активатора реакции полимеризации, и вводят около 1% уксусной кислоты в качестве стабилизатора, регулирующего молекулярную массу полимера. Затем раствор фильтруется и подается на полимеризацию в стальной автоклав. Процесс полимеризации осуществляется в атмосфере чистого азота при 250°С, 1,5 МПа в течение 10—11 ч. При высокой температуре вода раскрывает кольцо капролактама с образованием сперва в-аминоканроновой кислоты, а затем поликапролактама (капрон) с=о [c.212]

    Периодическая полимеризация капролактама гароводится в автоклавах из нержавеющей стали емкостью до 2J5 м обогрева ых дииилом — высокотемпературным органическим теплоносителем В нагретый до 90 "С жидкий капролактам вводят активатор и регулятор и подают смесь в автснслав Затем повышают температуру до 256 3 43, проводят полимеризацию, после чего при медленном снижении давления удаляют из расплава поликапроамида пары воды Общая продолжительность работы автоклава составляет 14— 16 ч [c.13]

    Аналогичный метод использовали также для получения дисперсий сополимеров е-капролактона с окисью этилена и другими эпоксидами [49. В качестве катализаторов применяли пятифтористый фосфор и эфират трехфтористого бора. Дисперсионную полимеризацию р-пропиолактона вели в циклогексане в присутствии эфирата трехфтористого бора с использованием сополимера лаурилметакрилата с глицидилметакрилатом в качестве предшественника привитого стабилизатора [45]. Описана также дисперсионная полимеризация лактамов в присутствии синтетических каучуков в растворе алифатических углеводородов [50]. Вероятно происходят реакции прививки на растворимый полимер. Например, е-капролактам при обработке натрий-е-капролактамом и толуилендиизоцианатом как активатором дает в алифатическом углеводороде в присутствии полибутадиена дисперсию полимера е-капролактама. Последнюю получали также в смеси алифатических и ароматических углеводородов при действии натрия в присутствии статистического сополимер ного предшественника стабилизатора на основе лаурилметакрилата и Л -метакрилоилкапро-лактама [45]. [c.244]

    Капролон В — продукт низкотемпературной полимеризации е-капролакта.ма в присутствии щелочных катализаторов и активатора (ацетилкапролактама). [c.415]

    Как уже отмечалось выше, при полимеризации капролактама в равновесии с полимером находятся капролактам и низкомолекулярные соединения. Количество этих веществ в полимеризате зависит от температуры реакции и остаточного содержания применявшихся активаторов или катализаторов процесса. Зависимость равновесия в системе поликапроамид—НМС от температуры реакционной массы для случая гидролитической полимеризации приведена на рис. 53. Содержание НМС и мономера в поликапроамиде, синтезируемом по способу анионной полимеризации при температуре реакции ниже температуры его плавления (менее 180°С), составляет всего 2—4% (рис. 54), что меньше обычного. Поскольку готовые изделия при таком способе полимеризации получают непосредственно в формах (процесс идет очень быстро), отпадает надобность в последующем расплавлении поликапроамида. Следовательно, содержание НМС в полимере возрастает так же, как при формовании после расплавления. Содержание НМС в поликапроамиде невелико и отпадает необходимость в их удалении. [c.145]

    Принцип непрерывной полимеризации при атмосферном давлении мономеров, образующих полиамиды, характеризуется, по определению Людевига, тем, что один или несколько мономеров, из которых синтезируют полиамид, в твердом, растворенном или, при применении капролактама, в расплавленном состоянии непрерывно вводят через дозирующие устройства в нагретую до высокой температуры трубу, в которой в присутствии соответствующих веществ и без применения повышенного или пониженного давления осуществляется процесс полимеризации или поликонденсации. По достижении требуемого молекулярного веса образовавшийся полимер непрерывно удаляют из реакционной трубы и перерабатывают обычным способом в волокна, щетину, пленку и т. д. [3]. Основанием для применения этого способа полимеризации капролактама был факт, установленный Людевигом в 1939 г. в присутствии небольших количеств соединений, отщепляющих при поликонденсации воду, например со-аминокарбоновых кислот или солей диаминов и дикарбоновых кислот ( активаторов ), из капролактама в течение нескольких часов при нормальном давлении может быть получен высокомолекулярный полиамид, пригодный для формования из него волокна. При большей продолжительности реакции капролактам может [c.94]

    Фрицше и Одор [98] описывают простой способ введения двуокиси титана в полимеризуемую систему, нашедший применение в производственной практике и позволяюш,ий отказаться от использования диспергаторов. Двуокись титана вместе с активатором — Б-аминокапроновой кислотой — вводят в аппарат для полимеризации в виде концентрированного раствора непосредственно после его приготовления через соответствующее дозирующее устройство, предусмотренное для введения активатора. Если эти вещества подаются в снабженную мешалкой зону аппарата для предварительной полимеризации, то упомянутые выше затруднения, связанные с удалением паров воды из расплава, не имеют места, поскольку в сравнительно широком аппарате предварительной полимеризации процесс дегазации протекает быстрее, чем в узкой трубе НП кроме того, в результате перемешивания происходит дальнейшее диспергирование частиц двуокиси титана. В этом случае можно отказаться от применения перемешивающих приспособлений в самой трубе НП. Этот способ дает особенно хюрошие результаты в тех случаях, когда в качестве активатора для достижения возможно более высокой производительности используется 6-аминокапроновая кислота, в присутствии которой сильно ускоряется процесс полимеризации. Как указывается в работе Фрицше и Одора, именно е-аминокапроновая кислота наиболее пригодна для диспергирования двуокиси титана соль АГ и капролактам дают худшие результаты. [c.218]

    Полимеризацию или поликонденсацию ведут в присутствии стабилизаторов (например, уксусной кислоты) и активаторов (воды) в атмосфере инертного газа (азота). Стабилизаторы добавляют для направления процесса и для получения однородного по величине молекул полимера. От количества стабилизатора зависит средняя величина (длина) молекулы полимера. Мономеры — капролактам и сощй АГ—- представляют собой белые кристаллические вещества. Лолимеризация. производится, как правило, не на химических заводах, а на заводах синтетического волокна. Ниже описывается в общих чертах процесс формования полиамидных волокон [c.44]

    Полимеризация капролактама производится в автоклаве. В начальной стадии процесса капролактам взаимодействует с водой и образует аминокапроновую кислоту. Процесс, описанный на стр. 86, идет до образования высокомолекулярного продукта. Процесс полимеризации протекает только при сравнительно высокой температуре и в присутстви активаторов. В качестве активаторов используют воду и соединения, которые выделяют воду в результате химических превращений (например, соль АГ, аминокапроновая кислота и другие соединения). [c.87]

    Полиамид типа капрон (перлон) получают путем полимеризации лактама е-аминокапроновой кислоты (капролактам). В присутствии воды (или другого активатора реакции) при высокой температуре происходит размыкание цикла молекулы капролактама и образуется поликапролак-там, представляющий собой линейный полиамид  [c.685]


Смотреть страницы где упоминается термин Активаторы полимеризации капролактама: [c.322]    [c.630]    [c.13]    [c.228]    [c.228]    [c.35]    [c.331]   
Основы химиии и технологии химических волокон Часть 2 (1965) -- [ c.34 ]

Основы химии и технологии производства химических волокон Том 2 (1964) -- [ c.34 ]

Технология производства химических волокон (1965) -- [ c.397 , c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Активаторы

Капролактам

Капролактам полимеризация



© 2025 chem21.info Реклама на сайте