Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поле лигандов сильное

    См. условие задачи 11.23 (поле лигандов— сильное)  [c.199]

    В этом случае поле лигандов сильнее межэлектронного взаимодействия, и если по-прежнему эти взаимодействия можно учесть в виде возмущений, то в первую очередь необходимо рассчитать влияние поля лигандов, а затем — межэлектронного взаимодействия. [c.239]

    Если же поле лигандов сильно влияет на комплексообразователь, и А принимает высокие значения, в поведении [c.103]


    У никеля (II) плоскоквадратное строение имеет диамагнитный ион М1(СК)4) ", что также объясняется высоким значением Д, создаваемым на этот р.чз лигандом сильного поля СМ . [c.611]

    Теория кристаллического поля вообще не принимает во внимание такие орбитали лигандов, поскольку лиганды в ней рассматриваются просто как заряженные сферы. В теории поля лигандов рассматриваются не только орбитали лигандов, при помощи которых они образуют связи с центральным ионом металла, но также по две негибридизованные р-орбитали на каждом лиганде, ориентированные перпендикулярно линии связи ме-талл-лиганд. Эти негибридизованные р-орбитали оказывают сильное влияние на энергию расщепления кристаллическим полем, А . [c.235]

    Сколько неспаренных электронов у ионов Сг , Сг , Ре , Со , Со а) в сильно октаэдрическом поле лигандов, б) в очень слабом октаэдрическом поле  [c.250]

    Сг ( ) 3 неспаренных электрона и в сильном, и в слабом поле лигандов [c.549]

    Какой из указанных ниже ионов следует в первую очередь отнести к лигандам сильного поля  [c.598]

    В сильном поле лигандов октаэдрической симметрии основным состоянием является Т2- Спин-орбитальное взаимодействие расщепляет [c.236]

    Магнитные свойства комплексов. Данные свойства можно предсказать, если принять, что наблюдаемый парамагнетизм имеет только спиновое происхождение. Рассмотрим ионы [Ре(СН),] и [Ре(Н20),1 . Из спектрохимического ряда следует, что лиганд СМ создает сильное, а лиганд Н2О — слабое поле. В сильном поле -электроны иона Ре все спарены (3 =0), а в слабом поле — не все (5 = 2) (рис. 56). Поэтому первый ион должен быть диамагнитным, а второй парамагнитным. Парамагнитный момент [Ре(Н20)в] " должен быть равен М = 2у 75 ТТ) = 4,90р,в (см. 12), что хорошо подтверждается опытом (5,26 [д,в). Небольшое расхождение связано с орбитальным магнетизмом. ..  [c.124]

    При большом значении А октаэдрические комплексы невыгодны также для атомов и ионов с конфигурацией так как при этом один электрон заселяет сильно разрыхляющую молекулярную а Р-орби-таль. В этом случае (например, с лигандами сильного поля СЫ" или СО) более типичны димерные комплексы с сг-связями металл — металл (см, стр, 328)  [c.131]

    Для o (II), как и для других атомов и ионов с конфигурацией d с лигандами сильного поля типа N более характерны димерные комплексы со связью металл — металл  [c.638]

    Как и у других -элементов, нулевая (а также отрицательная) степень окисления у никеля и его аналогов проявляется в соединениях с лигандами л-акцепторного типа СО, РРз, СЫ . При этом при электронной конфигурации центрального атома строение комплексов с лигандами сильного поля чаще всего отвечает структуре тетраэдра (рис. 255). В рамках метода валентных связей это соответствует 5р -гибридизации валентных орбиталей центрального атома  [c.647]


    У никеля (II) плоско-квадратное строение имеет диамагнитный ион [Ni(0N)4l ", что также объясняется высоким значением А, создаваемым на этот раз лигандом сильного поля 0N . [c.648]

    Объясните, исходя из <2 е -конфигурации иона [Mn( N)e] (октаэдрическая координация сильное поле лигандов), его магнитные свойства. [c.631]

    На примере различных комплексов марганца(1П) (слабое и сильное-поле лигандов) поясните зависимость их магнитных свойств от различной заселенности tig- и вя-орбиталей. [c.631]

    Рассмотрите расщепление и заполнение электронами -уровней цент- ральных атомов для цианидных комплексов (сильное поле лигандов) железа и кобальта в степени окисления +2 (конфигурации d и dP). Объясните -Причину различной устойчивости этих комплексов. [c.642]

    Какова должна быть гге -конфигурация основного состояния иона Со + при октаэдрической координации в слабом и в сильном поле лигандов  [c.642]

    Лиганды, находящиеся в левой части спектрохимического ряда, называются лигандами слабого поля или просто слабыми лигандами. Те лиганды, которые находятся в правой части спектрохимического ряда, называются лигандами сильного поля или сильными лигандами. На рис. 23.27 схематически показано, что происходит с энергией расщепления кристаллическим полем при изменении лигандов в ряду нескольких комплексов хрома(Ш). (Здесь уместно напомнить, что при последовательной ионизации атома переходного металла первыми отрываются валентные -электроны. Поэтому атом хрома имеет электронную конфигурацию [Аг] 45 3 , а ион Сг имеет конфигурацию [Аг] 3 .) Отметим, что с усилением поля, действующего на ион металла со стороны шести окружающих лигандов, расщепление энергетических уровней -орбита-лей металла усиливается. Поскольку спектр поглощения связан с этим энергетическим расщеплением, окраска комплексов неодинакова. [c.394]

    Объяснять причину спинового спаривания электронов в комплексах с лигандами сильного поля, т.е. в низкоспиновых комплексах. [c.401]

    Для центральных атомов Си" и Ag" извести плоскоквадратные комплексы [Си(ру)д] и [AgF4] " (поле лигандов — сильное). Составьте энергетическую диаграмму образования связей в этих комплексах (см. указание в задаче 11.43). [c.201]

    Число элежт- ровов Центральный ион Слабое поле лигандов Сильное поле лигандов  [c.426]

    Металлы в комплексах фигурируют в двух типах соединений, в высокоспиновом и низкоспиновом состояниях. Соответствующие уровни для ионов Ре + и Ре + показаны на рис. 6.25. Правило Гунда говорит, что наименьшей энергии в многоэлектронном атоме отвечает параллельное расположение спинов, т. е. высокоспиновое состояние. Однако если поле лигандов сильнее и расщепление уровней значительно, то электроны поневоле вынуждены располагаться на самых низких уровнях и реализуется низкоспиновое состояние. Такова ситуация в МЬО и НЬО,, где железо находится в ферроформе (ср. табл. 6.2). [c.217]

    Эти результаты, противоречащие изложенному выше, можно объяснить проявлением несвязывающих конфигураций и соответствующих энергий стабилизации поля лигандов. Вода имеет относительно слабое поле лигандов, и можно ожидать, что она будет образовывать спин-свобрдные комплексы, так что комплекс Со(И) будет обладать конфигурацией. С другой стороны, когда поле лигандов сильнее, как в случае цианид-ионов, следует ожидать образования спин-спаренных комплексов с конфигурацией. В этих условиях существует сильная тенденция к потере единственного электрона dyOp6mam с образованием комплекса Со(1П) в очень устойчивой -конфигурации. Такой процесс будет сопровождаться увеличением энергии стабилизации поля лиганда (от 1,8 до 2,4Д) и будет протекать тем легче, чем сильнее поле лигандов, так как у-орбитали, энергия которых больше, будут стабилизироваться сильнее. Эти рассуждения применимы также и к другим переходным элементам. [c.270]

Рис. IV. 8. Расщепление термов конфигурации в октаэдрическом поле лигандов — сильное поле Рис. IV. 8. <a href="/info/742689">Расщепление термов конфигурации</a> в <a href="/info/729451">октаэдрическом поле лигандов</a> — сильное поле
    В зависимости от величин Д и ЭСКП разграничивают сильное, среднее и слабое кристаллические поля. Как правило, лиганды, создающие сильное поле, образуют низкоспиновые комплексы. Величина расщепления кристаллическим полем зависит от заряда, размера и стереохимии лиганда. Экспериментально получен следующий ряд полей лигандов Сильное поле лигандов СО, N > фенантролин > N0 Среднее поле лигандов этилендиамнн>МНз>8СК > НгО>Р" Слабое поле лигандов НСОО- > ОН > С1- > Вг- > Г [c.16]

    Лиганды, расположенные в начале спектрохимиче-гкого ряда [лиганды сильного поля), вызывают значительное расщеплепие -подуровня. При этом энергия расщепления превышает энергию межэлектрон-ного отталкивания спаренных э [ектронов. Поэтому сначала заполняются е-орбитали — сперва одиночными, а затем спаренными электронами, после чего происходит заполнение у-орбиталей. [c.207]


    Прн образовании же иона [Со(СН)б] - вследствие влияния лиганда сильного поля (ион СК ) энергия расщепления <<-под-уровия будет столь значительна, что превысит энергию межэлек-тронного отталкивания спаренных электронов. В этом случае энергетически наиболее выгодно размещение нсех шести -электронов на е-подуровне в соответстпин со схемой  [c.207]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    Мы показали, что магнитные свойства и окраска комплексов переходных металлов зависят от природы лигандов и металла, которая влияет на энергию расщепления кристаллическим полем, А . Тем самым получен ответ на два вопроса из числа поставленных в начале данного раздела. Можно также объяснить необычную устойчивость 3 - и -конфигураций в комплексах с лигандами сильного поля. Эти конфигурации соответствуют полузаполненному и полностью заполненному Г2 ,-уровням. Они обладают повышенной устойчивостью при большом расщеплении уровней по той же причине, по которой устойчивы конфигурации 3 и 3 °, когда все пять -орбиталей имеют одинаковую энергию. Устойчивость 3 - и -конфигураций более заметна в комплексах с лигандами слабого поля, где расщепление кристаллическим полем невелико. [c.237]

    Обычно, когда проводигся исследование ионов переходных металлов, мы имеем дело не с индивидуальными ионами, а ионами, входящими в состав комплексов. Для определения влияния лигандов, входящих в комплексы ионов переходных металлов, на энергии -орбиталей пользуются двумя приближениями кристаллического поля. Электроны иона металла в комплексе отталкиваются друг от друга, отталкиваются они и от электронной плотности основания Льюиса (лиганда). Если отталкивание между электронами металла и электронной плотностью лигандов мало по сравнению с межэлектронным отталкиванием, применяют так называемое приближение слабого поля. Если лиганды — сильные основания Льюиса, отталкивание между электронами металла и электронами лигандов превыщает по величине межэлектронное отталкивание, в этом случае используется приближение сильного поля. [c.71]

    В спектрах октаэдрических комплексов Со с лигандами слабого поля (Dq/B = 0,7) наблюдаются три хорошо разрешенные полосы. Проведите каче-ствеппое отнесение этих полос, используя диаграммы Танабе — Сугано, и выпишите их в порядке снижения частот. Каким будет спектр октаэдрического комплекса Со с лигандами сильного поля  [c.125]

    Карбонилы металлов. В теории поля лигандов принимается, что неподеленные пары электронов СО участвуют в образовании ковалентных связей, переходя на молекулярные орбитали комплекса. В октаэдрическом карбониле Сг(СО)а двенадцать электронов шести молекул СО переходят на а-связывающие орбитали комплекса (а- д, Ьа и г)- Шесть электронов хрома располагаются на 2я-орбиталях (сильное поле, см. рис. 56). Эти орбитали не участвуют в образовании а-связей. Но они могут образовать -л-связи со свободными разрыхляющими п-орбиталями мЬлекулы СО, каждая из трех г -орби-талей с л -орбиталями двух молекул СО [c.128]

    Таким образом, теория кристаллического поля объясняет, что ноны большинства комплексных соединений окрашены. Становится также понятным, почему в водном растворе ионы Си+ бесцветны, тогда как ионы Си + окрашены гидратированный (комплексный) ион Си+ имеет конфигурацию Здесь заполнены все орбитали и поэтому переходы с одной -орбитали на другую невозможны. У гидратированного (комплексного) иона Си + ( ) одна -орбиталь свободна. По той же причине бесцветны имеющие электронную конфигурацию ионы А +, 2п +, Сс1 + и Hg +. Когда электронная конфигурация центрального иона содержит больше одного -электрона поверх замкнутой оболочки, картина возможных энергетических уровней и их расщепленне в поле лигандов заметно услои<няется. Существенную роль в этом случае играет взаимодействие -электронов между собой. Это взаимодействие может быть трех видов межэлектронное, спин-орбитальное и электронное с кристаллическим полем. В зависимости от соотношения между ними различают 1) слабое поле, когда взаимодействие электронов с кристаллическим полем меньше межэлектронного и спин-орбиталь-ного 2) среднее поле, когда взаимодействие электронов с кристаллическим полем меньше межэлектронного, но больше спин-орби-тального 3) сильное поле, когда взаимодействие электронов с кристаллическим полем больше как спин-орбитального, так и межэлектронного. [c.48]

    Заполнение и иона-комплексообразователя в слабом и сильном октаэдрическом поле лигандов [c.120]

    Возможны лн для октаэдрически коордииированного иона различия в расположении орбиталей в случаях лигандов сильного или слабого поля  [c.615]

Рис. 23.22. Энергетическая диаграмма -орбиталей иона металла в октаэдрическом поле лигандов в рамках модели криеталлического поля. В этой модели связь между металлом и донорными атомами считается чисто ионной. Энергия иона металла плюс координированные лиганды меньше, чем у изолированных металла и лигандов, вследствие электростатического взаимодействия между ионом металла и лигандами. Однако энергии -электронов металла повышаются вследствие их отталкивания от лигандов. Из-за неодинакового пространственного распределения электроны, находящиеся на орбиталях и с1- 2-,2, отталкиваются лигащ1ами сильнее, чем электроны, занимающие орбитали ( . и Это различие в отталкивании от лигандов приводит к расщеплению энергетических уровней -орбиталей, показанному в правой части рисунка и называемому расщеплением кристаллическим полем. Рис. 23.22. <a href="/info/18092">Энергетическая диаграмма</a> -<a href="/info/68436">орбиталей иона</a> металла в <a href="/info/729451">октаэдрическом поле лигандов</a> в <a href="/info/581824">рамках модели</a> криеталлического поля. В этой <a href="/info/1619984">модели связь между</a> металлом и донорными атомами считается <a href="/info/503745">чисто ионной</a>. <a href="/info/706304">Энергия иона металла</a> плюс координированные лиганды меньше, чем у изолированных металла и лигандов, вследствие электростатического <a href="/info/1645031">взаимодействия между ионом</a> металла и лигандами. Однако энергии -<a href="/info/10747">электронов металла</a> повышаются вследствие их отталкивания от лигандов. Из-за неодинакового <a href="/info/135221">пространственного распределения электроны</a>, находящиеся на орбиталях и с1- 2-,2, отталкиваются лигащ1ами сильнее, чем электроны, занимающие орбитали ( . и Это различие в отталкивании от лигандов приводит к <a href="/info/463802">расщеплению энергетических</a> уровней -орбиталей, показанному в <a href="/info/1689465">правой части</a> рисунка и называемому <a href="/info/389782">расщеплением кристаллическим</a> полем.
    Электроны, заселяющие -орбитали с пониженной кристаллическим полем энергией, стабилизированы относительно средней (невозмущенной) энергии -орбиталей на величину, называемую энергией стабилизации кристаллическим полем. В комплексах с лигандами сильного поля расщепление энергетических уровней -орбиталей настолько велико, что превосходит энергию спинового спаривания, и для -электронов выгодно спиновое спаривание на орбиталях нижнего энергетического уровня. В результате образуются низкоспиновые комплексы. В комплексах с лигандами слабого поля после заселения нижних по энергии орбиталей электроны начинают заселять -орбитали верхнего энергетического уровня, так как это выгоднее, чем спиновое спаривание на орбиталях нижнего уровня, и в результате возникают высо-коспииовые комплексы. [c.401]


Смотреть страницы где упоминается термин Поле лигандов сильное: [c.519]    [c.609]    [c.597]    [c.86]    [c.123]    [c.564]    [c.131]    [c.132]    [c.395]   
Физические методы в неорганической химии (1967) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Лиганд сильное



© 2025 chem21.info Реклама на сайте