Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергии орбиталей в электронных

    Вычислить энергию возбуждения электрона (в эВ) в атоме водорода при переходе с орбитали 15 на орбиталь 2р, если 1,дина излучаемого кванта света при обратном переходе составляет 1216 10 м. [c.39]

    Плоское строение молекулы и угол между связями 120 позволяют в методе ЛМО считать, что в локализованных а-связях атом углерода участвует гибридными хр -орбиталями. Каждый атом углерода участвует своими тремя электронами в трех таких о-связях двух С—Н и одной С—С. Еще одну связь С—С образуют не участвующие в гибридизации р -электроны, по одному от каждого атома. Так как р -орбитали направлены перпендикулярно плоскости молекулы, их перекрыванием образуется я-орбиталь, электронная плотность которой располагается над и под плоскостью молекулы. Таким образом, связь С=С оказывается двойной симметричной о л -связью. Разделяя связь между углеродными атомами в этилене на о- и л-связь и принимая энергию разрыва о-связи равной Е (С—С) = 347 кДж/моль. можно приписать л-связи в этилене энергию 250 кДж/моль. Таким образом, л-связь (С—С) в этилене менее прочна, чем а-связь, и легче разрывается, чем объясняется склонность этилена к реакции присоединения. [c.107]


    Если анализируемой системе сообщать достаточную энергию, то электроны атомов переходят в возбужденное состояние и примерно через 10 с спонтанно возвращаются на нижележащие энергетические орбитали с эмиссией избыточной энергии в виде дискретных и характеристических для каждого вида атомов электромагнитных колебаний в видимой, ультрафиолетовой или рентгеновской областях спектра. При этом спектры носят линейчатый характер. При возбуждении валентных (оптических) электронов свободных атомов излучаемые линии расположены в видимой и ультрафиолетовой областях спектра. При возбуждении электронов внутренних орбиталей атома излучаются кванты с более жесткой энергией (рентгеновское излучение). Линейчатые рентгеновские спектры могут быть получены при облучении анализируемого вещества электронами (рентгеноспектральный метод анализа или более жесткими, чем излучаемые, рентгеновскими квантами (рентгенофлуоресцентный метод анализа). [c.8]

    Согласно этому представлению химические связи формируются электронами не чистых , а смешанных , так называемых гибридных орбиталей. Последние являются результатом смешения атомных орбиталей. Иначе говоря, при гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и образуются орбитали (облака) новой, но уже одинаковой формы и одинаковой энергии. [c.73]

    Занятие (заселение) орбиталей электронами. Электроны занимают прежде всего уровни с наименьшей энергией. [c.33]

    Как же неравноценные по исходному состоянию электроны образуют равноценные химические связи Ответ на этот вопрос дает представление о гибридизации валентных орбиталей. Согласно этому представлению химические связи формируются электронами не "чистых", а "смешанных", так называемых гибридных орбиталей. Последние являются результатом смешения атомных орбиталей. Иначе говоря, при гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и образуются орбитали (облака) новой, но уже одинаковой формы и одинаковой энергии. [c.83]

    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]


    Рассчитано, что энергия отталкивания электронов одной и той же орбитали для иона Со равна 251 кДж/моль, энергия расщепления его З -орбиталей в октаэдрическом поле ионов Р составляет 156 кДж/моль, а в поле молекул НзМ — 265 кДж/моль. [c.508]

    Энергетическая диаграмма уровней атомных и молекулярных орбиталей двухатомных молекул элементов 2-го периода показана на рисунке 26. Этой диаграммой можно воспользоваться для выяснения распределения электронов по орбиталям в молекулах. При этом следует учесть энергию орбиталей, принцип Паули и правило Гунда. Так, реакция образования молекулы N2 из атомов может быть записана так  [c.49]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Важнейшим понятием данной главы является процесс заселения атомных орбиталей электронами и его связь с формой периодической таблицы. Следует обратить внимание учащихся на то, что последовательность орбитальных энергий атома можно определить из самой таблицы и ее не нужно заучивать. Нужно указать на отдельные исключения из идеальной последовательности заселения орбиталей, но не стоит останавливаться на этом подробно. Пример 1 (см. т. 1, с. 397) указывает, что конфигурация, предсказываемая принципом заполнения, в подобных случаях оказывается нижним возбужденным состоянием. [c.574]

    Однако это объяснение нельзя признать удачным. Во-первых, разница в узловой структуре орбиталей одинаковой симметрии сама по себе еще не гарантирует определенного соотношения их энергий. Во-вторых (и это самое важное ), появление локальных максимумов, обусловленных ортогональностью 45-АО к 5-орбиталям остова, следует рассматривать скорее как проявление эффекта выталкивания этих орбиталей из остова. Как уже отмечалось выше, не будь условий ортогональности, 45-орбиталь провалилась бы в остов, превратившись в безузловую 15-АО, имеющую только один большой максимум на ядре. Следует также заметить, что учет условий ортогональности возможен и при использовании безузловых 45-орбиталей, но с соответствующей заменой потенциала эффективного поля, действующего на описываемые этой орбиталью электроны, псевдопотенциалом, который отличается от исходного некоторой положительной добавкой. Иными словами, условия ортогональ-> [c.102]

    Как было указано ранее, спектр поглощения в видимой и ультрафиолетовой областях обусловлен переходами электронов с одних энергетических уровней иа другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с низшей -орбитали на -орбиталь с более высокой энергией. Так, например, комплекс [Т1(Н20)б] + имеет максимум поглощения при волновом числе V = 20 300 см . Это обусловливает фиолетовую окраску данного комплекса. Ион Т1 + имеет только один -электрон в октаэдрическом комплексе этот электрон может переходить с /гв-орбитали и е -орбиталь. Энергия квантов, отвечающая =20 300 см (238 кДж/моль), равна в соответствии с изложенным выше энергии перехода электрона с орбитали I2g на орбиталь eg, т. е. величине А. [c.124]

    Если число -электронов у комплексообразователя не превышает число -орбиталей с низкой энергией, то электроны располагаются на этих орбиталях. Например, три -электрона иона Сг + в октаэдрическом поле занимают трн -орбитали с низкой энергией  [c.125]

    Схема заполнения л-орбиталей приведена на рис. 46. Два электрона заполняют связывающую л-орбиталь, разрыхляющая л-орби-таль свободна. Энергия л-электронов = 2а 4- 2р. Так как энергия двух 2р г-электронов в Зтомах углерода равна 2а, энергия диссоциации л-связи = —2р. Кулонов- [c.108]

    В основном состоянии 2л электронов молекулы занимают п наиболее низких молекулярных орбиталей. Полная электронная энергия молекулы принимается равной сумме орбитальных энергий всех электронов  [c.111]

    Наиболее устойчиво состояние атома, в котором электроны имеют самую низкую энергию, т. е. находятся в ближайших к ядру слоях. Последовательность энергетических состояний в порядке возрастания энергии орбиталей многоэлектронного атома можно представить в виде следующего ряда 15<25<2р<35<3р<45 3 < <4р<5л 4 <5р<б5 5 4/<6р и т. д. [c.26]

    Подставив в соотношение (1,90) найденные значения 01, получим четыре значения энергии л-электронов на четырех молекулярных орбиталях  [c.36]


    Из четырех молекулярных орбиталей две и г )з) являются связующими и две и 4) — разрыхляющими. Четыре л-электро-на в молекуле бутадиена занимают энергетические уровни в соответствии с принципом заполнения Паули. Если молекула бутадиена находится в основном (невозбужденном) состоянии, то два электрона находятся на низшем уровне с энергией а остальные два — на следующем за ним уровне Е . Таким образом, полная энергия я-электронов в молекуле бутадиена в основном состоянии равна [c.37]

    Возникновение линий в спектре обусловлено тем, что при возбуждении атомов (нагревании газа, электроразряде и пр.) электроны, принимая соответствующие кванта энергии в=к, переходят в энергетическое состояние (орбиталь) с более высокой энергией. Переход электронов в состояние (орбиталь) с более низкой энергией сопровождается выделением кванта энергии согласно соотношению е = Лг. Это и приводит к появлению в спектре излучения отдельных линий. [c.20]

    Электроны, заселяющие -орбитали с пониженной кристаллическим полем энергией, стабилизированы относительно средней (невозмущенной) энергии -орбиталей на величину, называемую энергией стабилизации кристаллическим полем. В комплексах с лигандами сильного поля расщепление энергетических уровней -орбиталей настолько велико, что превосходит энергию спинового спаривания, и для -электронов выгодно спиновое спаривание на орбиталях нижнего энергетического уровня. В результате образуются низкоспиновые комплексы. В комплексах с лигандами слабого поля после заселения нижних по энергии орбиталей электроны начинают заселять -орбитали верхнего энергетического уровня, так как это выгоднее, чем спиновое спаривание на орбиталях нижнего уровня, и в результате возникают высо-коспииовые комплексы. [c.401]

    Теория валентных связей предполагает участие а образовании ковалентных связей не только чистых" атомньсх орбиталей, но и "смешанных , так называемых гибридных атомных орбиталей. При гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и [c.22]

    Сродством атома к электрону называют изменение энергии в процессе присоединения электрона к свободному атому с образованием отрицательного иона при температуре О К А + е = А (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. Если ВЗАО вырождена и занята не полностью, присоединяемый электрон заселяет ее с соблюдением первого правила Гунда. Из различных методов определения СЭ наиболее прямой и точный — измерение минимальной энергии фотоотрыва электрона от отрицательного иона. [c.39]

    Характер заполнения орбиталей атомов К, Са, и Зс показывает, что энергия электронов зависит не только от заряда ядра, но и от взаимодействия между электропами. На рис. 11 показана зависимость энергии атомных орбиталей от порядкового номера элемента (логарифмическая шкала). За единицу энергии электрона принято значение 13,6 эВ (энергия электрона пенозбуждеиного атО ма водорода). Анализ рис. II показывает, что с уаеличениеу порядкового но мера эле мента Z энергия электронов данного состояния (1,5, 2 , 2/ и т. д.) уменьшается. Одпако характер этого уменьшения для электронов разных энергетических состояний различен, что выражается в пересечении хода кривых. В частности, поэтому при Л = 19 и 20 кривые энергии 45-электрона лежат ниже кривой энергии З -электрона, а при 2 =. 21 кривая энергии Зсг-электрона лежит ииже к(1Ивой 4/7-электрона. Таким образом, у калия и кальция заполняется 4х-орби аль, а у скандия 3 /-орбиталь. [c.27]

    Если же ион (атом) попадает в создаваемое лигандами менее симметричное, чем сферическое, поле, то энергия d-электронов будет возрастать тем значительнее, чем ближе к лиганду расположено соответствующее электронное облако. Например, при расположении лигандов в вершииах октаэдра (октаэдрическая координация) электронные облака d .- и dx -y -орбиталей направлены к лигандам (рис. 5,а) и испытывают более сильное отталкивание, чем электронные облака dxy-, dxz- и ( г-орбиталей, направленные между лигандами (рис. 5,6). Поэтому энергия dz - и dx -y -электронов возрастет в большей степени, чем энергия остальных rf-электронов. [c.205]

    Рассмотрим состояние -орбиталей центрального иона. В сво бодном ионе электроны, находящиеся на каждой из пяти -орбн талей, обладают одинаковой энергией (рис. 160, а). Представим себе, что лиганды создают равномерное сферическое электростати ческое поле, в центре которого находится центральный ион. В этом гипотетическом случае энергия -орбиталей за счет отталкиваю щего действия лигандов возрастает на одинаковую величину, т, е все -орбитали останутся энергетически равноценными (рис. 160, б) В действительности, однако, лиганды неодинаково действуют на различные -орбитали если орбиталь расположена близко к ли ганду, энергия занимающего ее электрона возрастает более значи тельио, чем в том случае, когда орбиталь удалена от лиганда Например, прн октаэдрическом расположении лигандов вокруг центрального нона наибольшее отталкивание испытывают элек троны, находящиеся ка орбиталях г= и 1 ,/> направленных к ли гандам (рис. 161, а и б) поэтому их энергия будет более высокой, чем в гипотетическом сферическом поле. Напротив, , г и .г-ор-битали направлены между лигандами (рис. 161, в), так что энергия находящихся здесь электронов будет ниже, чем в сферическом поле. Таким образом, в октаэдрическом поле лигандов происходит расщепление -уровня центрального иона на два энергетических уровня (рис. 160,в) более высокий уровень, соответствующий [c.595]

    При обсуждении э.пектронного строения многоэлектронного атома следует исходить из наличия у него ядра и соответствующего числа электронов, Будем предполагать, что допустимые электронные орбитали, если и не точно идентичны орбиталям атома водорода, то представляют собой нечто подобное им-так называемые водородоподобные орбитали. Тогда можно мысленно построить многоэлектронный атом, последовательно помещая на эти орбитали по одному электрону, причем процесс заселения следует начинать с наиболее низких по энергии орбиталей. Таким образом мы построим модель атома в его основном состоянии, т. е. в состоянии с низшей электронной энергией. Такой способ мысленного построения многоэлектронного атома впервые применил Вольфганг Паули (1900-1958), который назвал описанный процесс принципом заполнения. По существу, однако, процесс мысленного построения атома основывается на трех принципах. [c.386]

    Как было отмечено ранее (в разд. 1.4), электроны распределяются по квантовым ячейкам (орбиталям) в соответствии с прави-ж)м Хунда при достаточном числе ячеек в каждой из них располагается по одному электрону. Это объясняется тем, что электроны отталкиваются друг от друга и потому стремятся з анять разные орбитали. Для того чтобы перевести электрон с орбитали, где он один, на другую орбиталь, где уже имеется электрон, требуется затрата некоторого количества энергйи Р. Величина Р может быть определена квантовомеханическим расчетом. При наличии в ионе комплексообразователя большего числа электронов, чем число орбиталей с низкой энергией, возможны два варианта заполнения орбиталей электронами. При А < Я электроны центрального иона в комплексе занимают те же орбитали, что и в свободном ионе. Ион комплексообразователя находится в состоянии с высоким спином. Если же А > Я, то поле лигандов вызывает переход электронов в уже занятые ячейки с более низкой энергией. В результате спаривания электронов суммарный спин уменьшается, т. е. ион-комплексообразователь переходит в состояние с низким спином. [c.125]

    При заселении орбиталей с одинаковой энергией (например, пяти 3 /-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных орбиталях, после чего начинается заселение орбиталей вторыми электронами. Это происходит в соответствии с правилом Гунда, согласно которому на орбиталях с одинаковой энергией электроны остаются по возможности неспаренньши. Такая особенность объясняется наличием электрон-электронного отталкивания. Два электрона, один из которых находится на р Орбитали, а другой на р -орбитали, имеют возможность находиться на большем расстоянии друг от друга, чем два электрона, спа--репные на одной р -орбитали (см. рис. 8-22). Следствием правила Гунда является особая устойчивость полузаполненного набора орбиталей (полного набора всех орбиталей с одинаковой энергией, на каждой из которых находится по одному электрону). При заселении набора из пяти -орбиталей шестым электроном он вынужден спариваться с другим электроном, уже находящимся на какой-либо из орбиталей. Взаимное отталкивание отрицательно заряженных электронов приводит к тому, что для удаления (ионизации) этого шестого электрона требуется меньшая энергия, чем для удаления одного из пяти электронов из полузаполненного набора пяти -орбиталей. По аналогичной причине четвертый электрон, заселяющий набор из трех р-орбиталей, удерживается в атоме менее прочно, чем третий электрон. [c.387]

    С лития, начинается следующий период в периодической системе. Два электрона заполняют 1 -орбиталь, а третий электрон в атоме вьшу-жден, согласно принципу запрета Паули, занимать следующую по возрастанию энергии орбиталь, т.е. 25-орбиталь  [c.393]

    Указанное отнесение орбиталей подтверждено исследованием фотоэлектронного спектра воды, в котором обнаружены три полосы, отвечающие отрыву электронов с трех высших орбиталей узкая, характерная для несвязывающих орбиталей, отвечает МО 1 1 [или 2рхо, см. запись (а)1 и две широкие, характерные для связывающих орбиталей, отвечающих МО Зл и 16г [или г[л и г1з2, см. запись (а)1. Энергии орбиталей соответственно равны 12,6 13,7 и 17,22 эВ. Это убедительное доказательство правильности представлений о делокализованных молекулярных орбиталях. Но можно показать, что распределение электронной плотности такое, как если бы существовали две локализованные двухцентровые связи О—Н. Для этого рас- [c.96]

    После того как порядковый номер элементов достигает 57, энергия 4/-орбиталей становится достаточно низкой, чтобы они могли использоваться для заселения электронами в атомах. Таким образом, после бария в шестом периоде начинается последовательное заселение электронами 4/-орбиталей, которое происходит у атомов 14 лантаноидных металлов. Подобно этому, в седьмом периоде после 2 = 89, когда 5/- и 6 -орбитали приобретают практически одинаковую энергию, возникает 14 актиноидных металлов, в атомах которых происходит последовательное заселение электронами 5/-орбиталей. Электронные конфигурации атомов, принадлежащих этим двум рядам внутренних переходных металлов, показаны на рис. 9-3. Как и при заселении -орбиталей у переходных металлов, заселение /-орбиталей также сопровождается отклонениями от строгой закономерности, причем такие отклонения чаще встречаются у актиноидов, чем у лантаноидов. Но и в этом случае достаточно запомнить лищь общую закономерность, отложив обсуждение отклонений от нее на более позднее время. (Укажем только, что поскольку первый элемент в каждом из рядов /-элементов- Ьа и Ас-имеет валентную конфигурацию вместо /, то иногда считается, что эти ряды начинаются с Се и ТЬ, как это указано, например, в таблице периодической системы, помещенной на внутренней стороне обложки этой книги.) [c.451]

    Отрицательные заряды, изображающие лиганды, оказывают наибольшее воздействие на <1 - и --орбитали, так как пучности этих орбиталей направлены прямо на лиганды (рис. 20-10). Электроны на ii-opбитaляx испытывают электростатическое отталкивание от неподеленных пар лигандов. Вследствие этого те электроны, которые находятся на двух указанных -орбиталях, приобретают большую энергию, чем электроны, находящиеся [c.228]

    Обычно, когда проводигся исследование ионов переходных металлов, мы имеем дело не с индивидуальными ионами, а ионами, входящими в состав комплексов. Для определения влияния лигандов, входящих в комплексы ионов переходных металлов, на энергии -орбиталей пользуются двумя приближениями кристаллического поля. Электроны иона металла в комплексе отталкиваются друг от друга, отталкиваются они и от электронной плотности основания Льюиса (лиганда). Если отталкивание между электронами металла и электронной плотностью лигандов мало по сравнению с межэлектронным отталкиванием, применяют так называемое приближение слабого поля. Если лиганды — сильные основания Льюиса, отталкивание между электронами металла и электронами лигандов превыщает по величине межэлектронное отталкивание, в этом случае используется приближение сильного поля. [c.71]

    В базис, предназначенный для расчета полной матрицы комплекса слабого поля, должны входить волновые функции, учитывающие элек-трон-электронное отталкивание в приближении кристаллического поля. Для комплекса сильного поля хорошим базисом будут действительные -орбитали. Таким образом, при нахождении наилучшего базиса большое значение имеют относительные величины факторов, влияющих на энергию -орбиталей. Приведем приблизительные величины некоторых эффектов. [c.139]

    Два пика наблюдаются для каждой полностью занятой орбиталн, включая ls-орбиталь электронов оболочки кислорода [27]. Пики А, В. С и пики в области больших энергий связи, чем энергия пика Oi , являются пика-ми-сателл1гтами (см. ниже). [c.344]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Теория кристаллического поля. Эта теория рассматривает воздействие лигандов на -орбитали иона-комплексообразователя. Форма и пространственное расположение -орбиталей представлены ранее на рис. 1.7. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы — эти электроны занимают один энергетический уровень. Лиганды, присоединяемые к положительному иону-комплексообразователю, могут быть нли отрицательными ионами, или полярными молекулами, которые обращены к комплексообразователю своим отрицательным концом. Между электронными облаками -электронов и отрицательными лигана,ами действуют силы отталкивания, приводящие к увеличению энергий -электронов, Однако воздействие лигандов па различные -орбитали неодинаково. Энергия электронов иа -орбиталях, расположенных близко к лигандам, возрастает больше, а на -орбиталях, удаленных от лнгаилов, меньше в результате под действием лигандов происходит расщепление энергетических уровней ё-орбиталей. [c.122]

    Теория кристаллического поля. В теории кристаллического поля (Ван-Флек) основной причиной стабильности комплекса считают электростатическое притяжение, возникающее между ионным или полярным лигандом (например, С1 , Н ,0) и центральным катионом. Рассматриваемые силы взаимодействия сходны с темн, которые су-шествуют в ионных кристаллах отсюда и происходит название теории. -Орбитали приведены на рис. 10. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы. Эти электро1И ,1 занимают одии энергетический уровень и потому вырождены. Лиганды, присоединенные к положительному иону, являются или отрицательными ионами, или полярными молекулами, повернутыми к комплексооб-разователю своим отрицательным концом. Между -орбиталями и отрицательными лигандами действуют силы отталкивания, увеличивающие энергию -электронов. В результате этого взаимодействия энергия электронов на -орбиталях, расположенных близко к лигандам, возрастает, а энергия электронов на -орбиталях, удаленных от ли1андов, уменьшается т. е. под действием лигандов происходит расщепление энергетических уровней -орбиталей и вырождение снимается. Так как -электроны в незначительной степени отталкиваются лигандами, происходит замена всего -уровня некоторым новым, который расщепляется на несколько подуровней. [c.46]

    Таким образом, с увеличением главного квантового числа атома водорода, частота колебаний возбужденного электрона снижается, длина волны растет, а энергия колебаний также снижается. Отметим, что в спектральной серии атома водорода при переходе электрона с I орбиты на II электрон поглощает фотон с длиной волны 1215,18 10 см и при переходе со II орбиты на III орбиталь электрон поглощает фотон с длиной волны 6562,79 - 10 см и т.д. [1]. Следователыю, частота фотона, поглощаемого электроном равна [1]  [c.42]


Смотреть страницы где упоминается термин Энергии орбиталей в электронных: [c.53]    [c.443]    [c.534]    [c.587]    [c.72]    [c.332]    [c.104]    [c.55]    [c.34]   
Теория и практические приложения метода ЭПР (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электронные орбитали

Энергия электрона

Энергия электронная



© 2024 chem21.info Реклама на сайте