Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Благородные газы атомы, строение

Рис. 11.2. Вещества, в которых каждый атом имеет электронное строение благородного газа. Каждая черточка означает пару валентных электронов. a + и кремний имеют электронное строение аргона с 18 электронами. Атомы Н удерживают только два электрона (электронное строение гелия). Остальные изображенные здесь атомы имеют по 10 электронов (электронное строение неона). Рис. 11.2. Вещества, в которых каждый атом имеет <a href="/info/132700">электронное строение благородного газа</a>. Каждая <a href="/info/1788971">черточка</a> означает <a href="/info/747928">пару валентных электронов</a>. a + и кремний имеют <a href="/info/1181098">электронное строение аргона</a> с 18 электронами. Атомы Н удерживают только два электрона (<a href="/info/1181515">электронное строение гелия</a>). Остальные изображенные здесь атомы имеют по 10 электронов (<a href="/info/7375">электронное строение</a> неона).

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]


    При образовании стабильных карбонилов металлов они приобретают электронную оболочку благородного газа, для чего требуется 12 электронов для металлов VI группы, 11 для металлов VII группы и 10 для металлов VIII группы. Поэтому карбонилы Ш и Мо взаимодействуют с 12 я-электронами шести групп СО и образуют октаэдрические молекулы [46]. Карбонил Ке присоединяет 5 групп СО (10 электронов) и образует двуядерный карбонил за счет связи Не—Ке. Молекулу этого карбонила можно построить из двух октаэдров, в каждом из которых в центральном положении находится один атом металла, пять вершин заняты группами СО, а шестая — вторым атомом металла. Молекула карбонила железа с пятью группами СО имеет строение тетрагональной пирамиды. Но известно, что пять эквивалентных гибриди-зованных связей не образуется, юэтому одна из связей Ре—С ослаблена, что подтверждается измерениями дипольного момента. В карбониле кобальта также одна из связей (Со—Со) отлична от других (Со—С). [c.110]

    После заполнения Зd-пoдypoвня (п = 3, / = 2) электроны, в соответствии со вторым правилом Клечковского, занимают подуровень 4р (п = 4, / = 1), возобновляя тем самым построение Л -слоя. Этот процесс начинается у атома галлия (2 = 31) и заканчивается у атома криптона Е = 36), электронное строение которого выражается формулой 1з 2з 2р 38 Зр Зс °4з Ар . Как и атомы предшествующих благородных газов — неона и аргона, атом криптона характеризуется структурой внешней электронной оболочки пз пр , где тг — главное квантовое число (неон — 2з 2р , аргон — 3в23р , криптон — Аз Ар ). [c.68]

    При рассмотрепии кобальта с порядковым числом 27 становится очевидным, что образование, подобное строению благородного газа, в этом случае маловероятно, так как трудно предположить, чтобы этот металл при соединении только лишь с окисыо углерода был насыщенным в своей внешней оболочке. Оп обязательно будет иметь слишком мало пли слишком много электронов. Поэтому молекула карбонила кобальта содержит не один атом металла, а представляет дикобальтоктокарбопил — С02 (СО)в, состоящий [c.700]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Структура карбонила кобальта и механизм оксореакции были предметом ряда исследований. Металлический кобальт обладает-27 электронами, которые распределены по электронным орбитам следующим образом Is 2s 2р 3s Зр Sd 4s . Дикобальтоктакарбонилу приписывается структура, согласно которой между двумя атомами кобальта существует одна простая связь и две. мостиковые связи через СО-группы к каждому из атомов кобальта прикреплено по 3 СО-группы. Таким 06pas0iM, при образовании ковалентных связей каждый атом кобальта получает-в совместное обладание 8 электронов от окружающих его молекул окиси углерода и еще один дополнительный электрон от-другого атома кобальта. Следовательно, электронная оболочка кобальта вместо 27 первоначальных электронов имеет 36 электронов, т. е. она приобретает электронную структуру благородного газа криптона. Согласно этому представлению, атом кобальта в карбониле кобальта будет обладать внещней электронной структурой следующего строения 3d ° 4s 4р . Было отмечено, что приобретение кобальтом структуры благородного газа возможно также в результате реакции между дикобальтоктакарбонилом и водородом с образованием гидрокарбонила кобальта [c.207]

    После заполнения З -подуровня (я — 3, I — 2) электроны, в соответствии со вторым правилом Клечковского, занимают подуровень 4р (п = 4, I I), возобновляя тем самым построение Ы-слоя. Этот процесс начинается у атома галлия (2 = 31) и заканчивается у атома криптона (2 = 36), электронное строение которого выражается формулой ls22s 2p 3s 3d °4s 4p . Как и атомы предшествующих благородных газов — неона и аргона, — атом криптона характеризуется структурой внешнего электронного слоя п5 пр , где п — главное квантовое число (неон — 25 2р , аргон — Зх Зр , криптон —45Чр ). [c.91]

    Основные научные исследования посвяш,ены развитию электронных представлений в химии. Предложил (1916) статическую электронную теорию строения атомов и молекул, согласно которой а) атомы благородных газов обладают особенно устойчивой восьмиэлектронной внешней оболочкой (атом гелия — двухэлектронной) б) атомы других элементов во внешней оболочке имеют неполный электронный октет в) образование химического соединения происходит вследствие перехода электронов от атома одного элемента к атому другого элемента и появления ионной химической связи, то есть благодаря электростатическому притяжению. Наиболее устойчивыми должны быть те соединения, в которых валентные электроны распределяются так, чтобы каждый атом был окружен оболочкой, имитирующей электронную оболочку благородного газа. Гипотеза Косселя о гетерополярных связях легла в основу теории ионной связи и гетеровалентности. [22, 324[ [c.258]


    Общими физическими свойствами, характеризующими металлы, обладают в свободном состоянии 82 элемента из 105. Естественно предположить, что атомы этих элементов должны быть сходными и по строению. Атомы элементов главных подгрупп I—III групп периодической системы на внешнем энергетическом уровне имеют мало электронов (от одного до трех) и, стремясь принять более устойчивое состояние (структуру атомов благородных газов), сравнительно легко отдают эти электроны, превращаясь в положительно заряженные ионы. Эта особенность обусловливает своеобразное строение кристаллической решетки металлов, которая состоит из положительных ионов и атомов, находящихся в узлах решетки. Между узлами находятся электроны, не принадлежащие каким-либо определенным атомам. Малые размеры электронов позволяют им более или менее свободно перемещаться по всему кристаллу металла, переходя от одного атома или иона к другому атому или иону. При достаточном сближении электронов с ионами образуются нейтральные атомы, которые снова распадаются на ионы и электроны. Следовательно, в кристалле металла существует своеобразное равновесие  [c.390]

    Степени окисления более высокие чем два обычно обусловлены обобществлением электронов. Так, атом хрома, имеющий 6 валентных электронов, может обобществлять их с тремя атомами кислорода, каждому из которых нужно 2 электрона, чтобы достичь устойчивого строения атома благородного газа в результате образуется СгОз, трехокись хрома. Рассмотрение иаи- [c.148]

    Дальнейшее изучение свойств растворов подтвердило наличие в водных растворах гидратированных ионов, например Na+ (водн.), Мд (водн.), А1 + (водн.), (водн.) и 1 (водн.), а также ионов сложного строения, таких, как SOJ (водн.). Многие из этих ионов обладают электрическим зарядом в результате того, что электронные оболочки соответствующих атомов становятся такими же, как и оболочки атомов ближайших к ним благородных газов. Число электронов, которые при этом теряет или получает атом, и называется ионной валентностью например, -Ь1 для Na+ и —1 для С1 . [c.159]

    Исторически потенциалы типа 6—12, 6-ехр и др. возникли как способ описания взаимодействий атомов благородных газов, а затем и многоатомных молекул [26]. Впоследствии оказалось, что применение межмолекулярных потенциалов к органическим кристаллам мало что дает, поскольку для описания взаимодействия таких молекул, как, скажем, метан или бензол, требовались бы различные потенциальные кривые. А. И. Китайгородским [40, V. 3, р. 173 41] была построена теория органических кристаллов, учитывающая атом-атом потенциалы вместо межмолекулярных. Расчет взаимодействия молекул сводится в этом случае к суммированию атомных взаимодействий по всем парам атомов, принадлежащих рассматриваемым молекулам. Такой подход оказался исключительно плодотворным для предсказания строения и свойств органических кристаллов. [c.77]

    Подобная близость свойств объясняется тем, что в высшей степени окисленности атомы элементов главных и побочных подгрупп приобретают сходное электронное строение. Например, атом хрома имеет электронную структуру 15 25 2р 35 3р 3й45 Когда хром находится в степени окисленности -[-6 (например, в оксиде СгОз), шесть электронов его атома (пять Зё- и один 45-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию 15 28 2р Зз Зр , отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисленности -)-6 (например, в триоксиде серы 50з), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных 1з 25 2р ) также соответствует электронной структуре благородного газа. [c.647]

    Рассмотрим простейший случай молекулы, в которой изучаемый атом или ион имеет структуру благородного газа и не относится к переходным элементам с дефектами в строении электронных оболочек. В этом случае система, образующаяся в процессе рентгеновского поглощения, состоящая из вырванного из К-оболочки электрона и взаимодействующего с ним ядра атома, окруженного устойчивой электронной оболочкой, мончет приближенно рассматриваться как водородоподобный атом и относительно просто поддается расчету. Для проверки выводов теории можно воспользоваться экспериментальными данными, относящимися к К-краям поглощения благородных газов, которые в настоящий момент достаточно хорошо изучены. [c.129]

    Изучая ферроцианиды, феррицианиды и амминосоединения, Вернер (1891) высказал предположение, что в некоторых случаях, "когда основные валентности атома насыщены, он тем не менее может комбинироваться или координироваться с другими атомами, группами или молекулами, образуя комплексы. Максимальное число атомов, групп или молекул, которое может быть таким образом присоединено к центральному атому (координационное число), обычно равно четырем или шести. При координационном числе 6 вокруг центрального атома образуется октаэдрическая симметричная конфигурация при координационном числе 4 возможна плоскостная или тетраэдрическая конфигурация. Комплекс в целом может быть нейтральным или обладать свойствами аниона или катиона. Величина заряда комплекса и его знак зависят от характера частиц, связанных с центральным атомом в координационной сфере. Электронная интерпретация строения вернеровских соединений основана на структуре внешней электронной оболочки центрального атома и его тенденции к приобретению электронной конфигурации ближайшего благородного газа.  [c.620]

    Расчеты К для адсорбции благородных газов на ГТС описаны в ряде работ [140, 141, 193, 194]. Было установлено [193], что при заданных значениях параметров потенциальной функции ф значения К заметно зависят от формы ф. Поэтому при оценках параметров функции ф независимыми от адсорбционных данных способами для ф следует выбрать теоретически наиболее оправданную форму. Вместе с тем при фиксированных значениях параметров потенциальной функции Ф значения К мало чувствительны к форме ф. Поэтому при оценках параметров ф с использованием экспериментальных значений/С1 выбор формы ф не существен. Кроме того, было показано [193], что при фиксированных значениях параметров как потенциальной функции ф, так и потенциальной функции Ф, пренебрежение атомным строением базисных плоскостей графита при суммировании ф (приближение Крауэлла) слабо сказывается на рассчитанных значениях константы К, однако пренебрежение слоистым строением решетки графита (приближение Лондона) приводит к значениям этой константы, сильно отличающимся от соответствующих значений, получающихся при остальных более точных способах суммирования ф. Поэтому, чтобы правильно выбрать форму потенциала Ф, необходимо учесть слоистое строение графита как при определении Ф на основании атом-атомного потенциала ф при его суммировании, так и при определении Ф на основании значений К. - [c.115]

    Осн. исследования посвящены развитию электронных представлений в химии. Пред/юлсил (1916) статическую электронную теорию строения атомов и молекул, согласно которой а) атомы благородных газов обладают особенно устойчивой восьмиэлектропной внешней оболочкой (атом гелия — двухэлектронной) б) атомы др. элем, во внешней оболочке имеют неполный электронный октет в) образование хим. соед. происходит вследствие перехода электронов от атома одного элем, к атому другого и появления ионной хим. связи, т. е. благодаря электростатическому притяжению. Наиболее устойчивыми [c.224]

    КНз). Для молекул, обладающих квадруполями (N2. Нг и др.) или имеющих симметричное строение (атомы благородных газов), ни один из рассмотренных эффектов не определяет значение действительных сил притяжения между молекулами. Это явление объяснено Лондоном с помощью дисперсионного эффекта. Он показал, что любой симметричный- атом обладает мгновенным дипольным моментом из-за мгновенной несимметричности его элекхронов в пространстве. В этом отношении наиболее характерен атом водорода, который в любой момент времени обладает флюктуирующим дипольным моментом с непрерывно меняющимся в пространстве направлением. Средний диполь такой молекулы равен нулю, что подтверждено экспериментально. Осциллирующий диполь любого атома создает переменное электрическое поле, которое вызывает смещение зарядов соседних атомов. Индуцированный диполь имеет ту же фазу, что и задающий осциллирующий диполь, поэтому возникают результирующие силы притяжения. Энергия дисперсионного взаимодействия [c.8]


Смотреть страницы где упоминается термин Благородные газы атомы, строение: [c.96]    [c.207]    [c.373]    [c.111]    [c.373]    [c.255]    [c.96]    [c.8]    [c.92]    [c.20]    [c.70]    [c.255]   
Общая и неорганическая химия (1981) -- [ c.486 ]




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Газ благородные

Газы благородные



© 2025 chem21.info Реклама на сайте