Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы строение сложных ионных

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]


    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    ПРИНЦИПЫ, ОПРЕДЕЛЯЮЩИЕ СТРОЕНИЕ СЛОЖНЫХ ИОННЫХ КРИСТАЛЛОВ [c.368]

    Большинство минералов и руд, встречающихся в природе, являются ионными кристаллами. К ним, например, относятся силикаты, часто образующие кристаллы весьма сложного строения. Они составляют основную массу земной коры. В структуру силикатов входят в качестве наиболее существенных единиц атомы кислорода и кремния. При этом образуются как ионы свободного кислорода, так и кремнекислородные анионы в виде тетраэдров (5104)Наряду с этим силикаты содержат ионы многих других элементов К, На, Ре, М , Са и т. д. Силикаты, например базальты, граниты, обычно очень тугоплавки. [c.162]

    Как правило, кристаллы большинства органических соединений с ковалентными связями растут из растворов не так легко, как кристаллы солей, имеющих ионное строение. Причина состоит в том, что строительными блоками в процессе образования органических кристаллов являются молекулы сложной природы, которые могут содержать цепи или кольца из [c.205]

    Значительную помощь в решении вопроса о молекулярном состоянии расплавленных солей оказывает кристаллохимия . Если в твердом состоянии кристалл построен из ионов, то можно предположить, что и расплав будет иметь ионную структуру, так как высокая температура должна способствовать диссоциации солей. Изменять положение может лишь взаимодействие солей в расплаве, что, безусловно, скажется на величине электропроводности. Беляев указывает, что расплавы при температуре электролиза имеют строение, более близкое к твердому состоянию, чем к газам. С повышением температуры степень неупорядоченности , имеющаяся в твердых кристаллах, растет и соответственно возрастает электропроводность расплавов. Взаимодействуя между собой в расплаве, часть, ионов может образовывать сложные комплексные группировки. Это особенно относится к мнОгозарядным ионам при небольших их радиусах. На электродах наряду с простыми ионами могут разряжаться и комплексные, К сожалению, о разряде комплексных ионов в расплавах в литературе имеется пока мало данных ".  [c.409]


    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]

    Специфичность колебательных спектров кристаллов определяется регулярностью их строения. Упорядоченность ориентации молекул и сложных ионов в кристалле приводит к дихроизму, который используют, например, при определении положений атомов водорода в решетке. [c.11]

    Метод ЯМР получил очень широкое распространение. По мере накопления данных, необходимых для построения шкалы химических сдвигов, положение резонансной линии в спектре исследуемого вещества все больше может служить для характеристики окружения, в котором находится данный протон в молекуле, и для идентификации его. Интенсивность сигнала характеризует число протонов данного вида в молекуле и тонкая структура — спин-спиновое взаимодействие. ЯМР используют при изучении строения сложных молекул органических веществ или для определения конформации молекул, распределения электронной плотности, при изучении свободных радикалов, водородных связей, гидратации ионов в растворах, процессов комплексообразования, структуры кристаллов, стекол и жидкостей и др. [c.113]

    Особые типы структуры молекул и кристаллов. Большинство комплексных ионов, молекул и кристаллов имеет простое симметричное строение, например, в виде правильных треугольников, тетраэдров, квадратов, октаэдров и кубов, — однако это не всегда справедливо, и существуют молекулы, форма которых не соответствует ни одному из названных типов и строение которых трудно объяснить на основе электронной теории или электростатическими силами. Существует также множество кристаллов, имеющих исключительно сложную структуру, часто содержащую сильно деформированные тетраэдры и октаэдры. Хотя искажения структуры могут иногда быть обусловлены тенденцией некоторых атомов или ионов к образованию возможно более плотной упаковки, тем не менее, имеется много случаев, в которых расположение можно характеризовать как, по меньшей мере, неожиданное. [c.334]

    Периодический закон Д. И. Менделеева обобщил и систематизировал все многообразие свойств химических элементов, их сходства и различия, сложность и изменчивость поведения их в химических реакциях в настоящее время благодаря ему удается проследить связь между химическими свойствами и внутренним строением атомов, молекул, ионов, кристаллов простых и сложных веществ. [c.22]

    Рассмотрим некоторые графы, которые используются для описания структуры кристаллов. Базисное множество в этом случае образуют либо нейтральные атомы (в ковалентных кристаллах), либо ионы (в ионных кристаллах), либо отдельные молекулы (в молекулярных кристаллах), либо группы молекул. Каждому элементу базисного множества ставится в соответствие вершина. Определяются ближайшие соседи (первая координационная сфера). Две вершины считаются смежными, если соответствующий одной из них элемент базисного множества лежит в первой координационной сфере другого элемента. Такой подход дает возможность абстрагироваться от деталей строения элементов базисного множества, которое может быть достаточно сложным, и изучать неметрические свойства кристаллов, определяемые лишь отношением ближайшего соседства. На этом пути появляются графы с бесконечным числом вершин самой разной природы. Их геометрическую реализацию в трехмерном пространстве, называемую в дальнейшем решеткой, обычно выполняют таким образом, чтобы сохранились основные свойства симметрии кристаллов. [c.42]

    С точки зрения атомно-молекулярного учения в процессе образования молекулы обычно участвует небольшое число атомов, которые соединяются всегда в строго определенном количественном соотношении. Поэтому количественный состав образующихся молекул, а следовательно, и состав образующихся веществ молекулярного строения оказывается постоянным. В процессах же образования кристаллов немолекулярного (атомного или ионного) строения участвует очень большое число частиц, которые соединяются не всегда в строго определенном количественном соотношении. Поэтому количественный состав образующихся атомных или ионных кристаллов может быть переменным в зависимости от способов их получения. Количественный состав сложных веществ удобно выражать через массовые доли элементов. [c.7]


    Как уже было сказано, молекулярная теория растворов (и теория однокомпонентных жидкостей) в настоящее время переживает период интенсивного развития. Теоретическое исследование жидких молекулярных систем связано с большими трудностями. Силы, действующие в жидкостях между атомами, молекулами, ионами, до сих пор мало изучены. Молекулярное строение жидкостей является более сложным, чем строение кристаллов и газов и до сих пор выяснено весьма недостаточно. Поэтому теория растворов и теория однокомпонентных жидкостей в общем далеко еще не достигли той степени точности, которой обладает, например, теория разреженных газов. Наряду с более строгими и перспективными методами в современной молекулярной теории растворов (и чистых жидкостей) важную роль играют менее строгие методы, такие, как метод свободного объема и квазихимический метод. Поэтому было необходимо дать читателю возмож- [c.9]

    Валентные углы (327). 5. Классификация молекулярных структур (328). 6. Применение принципов плотнейшей упаковки к молекулярным кристаллам (328). 7. Строение углеводородов (330). 8. Строение более сложных органических соединений (333). 9. Ионные структуры соединений элементов-органогенов (335). 10. Зависимость характера связи от межатомных расстояний (337) [c.359]

    Кристаллоструктурные задачи. Стереохимические исследования важны главным образом для сложных по составу соединений, чаще всего включающих фрагменты (лиганды, радикалы, молекулы) органической природы. Но существуют и такие классы соединений, как инт ермё-таллические и ионные кристаллы, где дальний порядок, т. е. не стереохимический, а упаковочный (кристаллоструктурный) аспект строения, более существен, чем стереохимический. Это связано с тем, что именно строение кристалла Б целом, а не конфигурации отдельных структурных кирпичей определяют анизотропию кристаллического вещества и такие физические свойства, как твердость, упругость, а также сегнетоэлектрические, пироэлектрические и другие характеристики твердых соединений, используемые в современной технике. Кроме того, большое значение имеет изучение общих закономерностей кристалла в целом (дальнего порядка) в семействах родственных по составу соединений. Примером может слу- [c.134]

    С развитием теоретических основ кристаллоэнергети-ки неизбежно должно усилиться значение РСА в термодинамике твердою тела, ибо для расчета одного из важнейших термодинамических параметров — потенциальной энергии кристалла при абсолютном нуле — требуется знание структуры кристалла. В настоящее время такие расчеты, в определенном приближении, проводятся главным образом для чисто ионных и чисто вандерваальсовых взаимодействий. Но с развитием квантовой химии становится реальной возможность относительно быстрой (и не слишком уж грубой) оценки зарядов на атомах сложных гетероатомных молекул. Тогда упаковочный (кристаллоструктурный) аспект строения кристаллов сложных соединений (элементорганических, комплексных и др.), находящийся вне поля зрения исследователя, окажется весьма актуальным. [c.135]

    Кристаллоструктурные задачи. Стереохимические исследования важны главным образом для сложных по составу соединений, чаще всего включающих фрагменты (лиганды, радикалы, молекулы) органической природы. Но существуют и такие классы соединений, как интерметаллические и ионные кристаллы, где дальний порядок, т. е. не стереохимический, а упаковочный (кристаллоструктурный) аспект строения, более существен, чем стереохимический. Это связано с тем, что именно строение кристалла в целом, а не конфигурации отдельных структурных кирпичей определяют анизотропию кристаллического вещества и такие физические свойства, как твердость, упругость, а также сегнетоэлектрические, пироэлектрические и другие характеристики [c.178]

    Ионные кристаллические решетки построены из положительно и отрицательно заряженных ионов, между которыми действуют электростатические (кулоновские) силы притяжения. Ионы могут быть простыми, например в кристалле ЫаС1, и сложными, например в кристалле (ЫН4)2504. Строение ионных кристаллов определяется главным образом отношением радчусов разноименно заряженных и отталкиванием одноименно заряженных ионов. [c.78]

    Применение принципов плотнейшей упаковки к молекулярным кристаллам 7. Строение углеводородов 8. Строение более сложных органических соединений 9. Ионные стрзгктуры соединений эпемептов-оргаиогенов [c.400]

    При выращивании базисных кристаллов из природного шихтового кварца в растворе может накапливаться примесь алюминия, что приводит к более интенсивному ее внедрению в пирамиды 1120 и 1122 на завершающих стадиях процесса роста. Аналогичные закономерности распределения структурной примеси проявляются и в случае выращивания кварца из растворов, содержащих примесь ионов железа. При изменении состава и строения примесных комплексов или ионов нередко вырастают полизональные кристаллы. Соответствующие перестройки структуры примесных фаз могут происходить как в растворе (например, изменение степени окисления ионов железа приводит нередко к нарастанию разноцветных слоев в пирамиде пинакоида), так и в кристаллической матрице непосредственно в процессе выращивания и, как уже отмечалось, после завершения роста при различных воздействиях. В последнем случае имеют место довольно сложные процессы изменения строения примесных дефектов кристаллической решетки, что наблюдалось при выращивании цитринов и аметистов (образование окрашенных зон преимущественно в поверхностном слое). Значительные изменения физико-хи- [c.45]

    Нам кажется, что ГПГ и ГПС (с известными оговорками в пе-водных системах) могут служить полезной перевальной точкой на пути от т = О к пасьпценному раствору. Для развития теории концентрированных растворов полезно выбрать какое-либо состояние, которое отличалось бы возможной простотой строения фазы и было пригодно хотя бы для приб.лиженных модельных расчетов. Насыщенные растворы для этой цели не годятся, так как они идентичны только с формальной термодинамической точки зрения (равенство химических потенциалов ионов в растворе и в кристалле), структура же их разнообразна от состояния бесконечного разбавления (малорастворимые электролиты) до строения, приближающегося к кристаллической рен етке. В дальнейшем мы покажем, что на ГПГ — водные растворы сильных электролитов находятся в структурном отношении в приближенно соответствующих состояниях. В средах со средними и низкими диэлектрическими проницаемостями, разумеется, положение значительно сложнее из-за неполной диссоциации и возможных специфических соединений с растворителем. Ряд доказательств реальности ГПГ будет приведен в да.тьпейшем. [c.123]

    Основные научные работы относятся к кристаллографии, структурной минералогии и геохимии. Разработал теорию плотнейших упаковок атомов и с ее позиции рассмотрел структуры ионных кристаллов и металлических фаз, что позволило ему расшифровать свыше 500 сложных структур и вывести 1651 группу антисимметрии. Один из основоположников кристаллохимии силикатов. Сформулировал основные. эакономерности строения силикатов. Совместно с Г. Б. Бокием открыл (1974) закономерность морфотропии в гомологических рядах полупроводник — металл. [c.47]

    Экспериментальные условия, принятые в этом исследовании, были аналогичны условиям обработки сточной воды, при которой может протекать реакция фосфатного замещения. Ликиа и Стамм [53] установили, что фаза фосфата кальция может дать центр кристаллизации на субстрате карбоната кальция. Как следует из материала, обсужденного ранее, такая фаза образуется при гораздо более высоких степенях пересыщения растворов фосфата кальция, чем те, которые использованы в данном исследовании. Действительно, Фергюсон и Мак Карти [7] показали, что заметное ингибирование роста кристаллов карбоната кальция могло сопровождаться образованием фазы фосфата кальция в растворе, сильно пересыщенном относительно как карбоната, так и фосфата кальция. В ходе самопроизволь-иого осаждения карбоната кальция из сильно пересыщенных растворов сложного состава [54, 56] ингибирование образования кальцита может наступить после того, как в растворе образовались стабильные центры кристаллизации. Например, тот факт, что ион магния не влияет на скорость роста кристаллов арагонита [56], позволяет сделать заключение, что кристаллическое строение самопроизвольно осаждающегося карбоната кальция может быть отрегулировано скоростью роста кристалла, установившейся после образования центров кристаллизации. Одкако в наших экспериментах по росту затравочного кристалла магнийсодержащая фаза на поверхности затравочных кристаллов кальцита не образовывалась даже тогда, когда ион магния мог заместить ион кальция в решетке кальцита с незначительным кристаллографическим искажением. Растворы, содержащие высокие концентрации иона магния, были пересыщенными по отношению к термодинамически устойчивому смешанному карбонату (доломиту), но даже в этих растворах концентрация иона магния оставалась практически неизменной в течение всей реакции кристаллизации. Такое наблюдение подтверждает механизм ингибирования, в основе которого лежит поверхностная адсорбция, что иллюстрируется изотермой адсорбции Ленгмюра. Это также согласуется с данными Берке-ра [56], который обнаружил включение ионов магния в растущие затравочные кристаллы кальцита только после длительного периода кристаллизации (10—50 ч) из сильно пересыщенных растворов (например, 0,50 М Na2 Oз-f 0,50 М СаСЬ). [c.44]

    Для молекул с атомными связями выполняется в общем правило Льюса при четном общем числе электронов общий магнитный момент молекулы равен нулю, при нечетном числе электронов момент равен 1,73 магнетона, т. е. соответствует магнитному спиновому моменту электрона. (Исключение из этого правила представляют молекулы О2 и N0). В кристаллических решетках, построенных из атомов или сильно деформированных ионов, соотношения оказываются болев сложными. Обнаруживающиеся в них влияния на парамагнетизм еще не выяснены окончательно. Предположение о том, что явления ферромагнетизма и антиферромагнетизма определяются взаимным магнитным сопряжением атомов, обусловленным атомными связями, простирающимися через всю кристаллическую решетку, кажется хорошо обоснованным. Ферромагнетизм проявляется, если существуют атомные связи с параллельными электронными спинами (в противоположность обычному случаю ). Проходящие через весь кристалл атомные связи с антипараллельными спинами обусловливают антиферромагнетизм. Во многих случаях на основании изучения магнитных свойств оказывается возможным сделать однозначное заключение о строении. Это следует показать на нескольких примерах. [c.341]

    Поведение растворов сильных и слабых электролитов в жидком сернистом ангидриде было предметом обширных исследований с начала XX века [1]. Многие из них уже рассматривались в обзорах, опубликованных сравнительно недавно [2—4.1. Наиболее полным обзором химических процессов в этом растворителе является обзор Яндера [2]. В настоящем обзоре рассматриваются исключительно те работы последнего десятилетия, в которых измерение электропроводности в растворах ЗОг и теоретическое рассмотрение проводили с целью изучения зависимости равновесий ассоциации ионов от ионного строения ионофорных (имеющих ионное строение в кристалле) [5] веществ и — в более сложном случае — ионогенных (имеющих ковалентное строение в кристаллах) [5] веществ. Здесь коротко затрагиваются также несколько родственных вопросов, например влияние образования ионных пар на нуклеофильную реакционную способность аниона. [c.69]


Смотреть страницы где упоминается термин Кристаллы строение сложных ионных: [c.679]    [c.37]    [c.679]    [c.12]    [c.368]    [c.112]    [c.79]    [c.284]    [c.131]    [c.70]    [c.528]    [c.70]    [c.528]    [c.78]    [c.719]    [c.150]   
Природа химической связи (1947) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы сложные

Кристалл строение

Кристаллы ионные

Кристаллы ионов

Строение сложных ионных кристаллов, принципы определения



© 2025 chem21.info Реклама на сайте