Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория ионной химической связи

    B. Коссель развил теорию ионной химической связи. [c.586]

    Природу ионной связи, структуру и свойства ионных соединений можно объяснить с позиций электростатической теории химической связи. В рамках этой теории химическое взаимодействие трактуется как процесс образования ионов и последующего их электростатического взаимодействия. [c.102]


    Наиболее проста природа ионной связи. Для ее качественного и количественного описания не требуется привлечения квантовой механики. Ионную связь удовлетворительно описывает теория атома Бора. Первоначально Коссель считал, что при взаимодействии разнородные атомы стремятся приобрести конфигурацию внешней электронной оболочки инертных газов. Это достигается отдачей и присоединением электронов. Атомы, отдающие свои электроны, превращаются в положительно заряженные ионы, а присоединяющие электроны — в отрицательные ионы. Химическая связь обеспечивается за счет электростатического притяжения образовавшихся ионов. [c.35]

    Растворы солей проводят электрический ток, и это их свойство сыграло чрезвычайно важную роль на первой стадии развития теорий химической связи. Электропроводность металлов обусловлена перемешением в них электронов ионы металла при протекании через него электрического тока остаются на своих местах. Кристаллические соли вообще не проводят электрический ток, но если расплавить соль, положительные и отрицательные ионы при наличии электрического напряжения могут в жидкости направленно мигрировать в противоположные стороны. Подвижность ионов соли оказывается еще большей, если соль растворена в воде и, следовательно, если ее ионы гидратированы. [c.40]

    Ионная связь. Первая научная теория ионной химической связи была сформулирована в 1916 г. Косселем. Исходя из того, что атомы гелия (двухэлектронная наружная оболочка), неона и аргона (восьмиэлектронные наружные оболочки) химически очень устойчивы, Коссель предположил, что атомам других элементов свойственно стремление приобрести такие устойчивые наружные оболочки. Например, атом N3, имеющий только один электрон на внешней оболочке, стремится его отдать с другой стороны, атом хлора, у которого не хватает одного электрона до внешней оболочки аргона, стремится его приобрести. С этой точки зрения при взаимодействии натрия с хлором процесс идет так  [c.308]

    Волновая теория света, развивавшаяся до сих пор как теория упругих колебаний в универсальной среде — эфире, была переформулирована в терминах теории электромагнитных волн. Несколько позже при исследовании катодных лучей был открыт электрон и получила развитие химическая теория ионов в связи с гипотезой об электролитической диссоциации. Общепринятым стало представление о том, что атомы являются системами, построенными из электронов и положительных ионов. Возникла, основанная на этом представлении, ветвь физики, называемая электронной теорией материи , программой которой явилось объяснение свойств материи с помощью законов электромагнитного поля. [c.12]


    И ваш случай, — снова обернулся учитель к Водороду и Хлору, — давно известен людям. Почти одновременно с Косселем американский ученый Джильберт Льюис создал еще одну теорию, объясняющую химические связи. Его представления были разнообразнее. Он принимал во внимание, что не каждый атом согласен добровольно отдавать свои электроны, как, например. Литий, и участвовать в образовании ионных связей. Льюис не так категоричен и бескомпромиссен в своих представлениях о химических связях. Он считает, что в основе всех ваших интересов лежит стремление атомов приобрести завершенную электронную конфигурацию инертных газов. И осуществление ваших стремлений может происходить мирным путем. Один партнер отдает один электрон, другой, следуя его примеру, добавляет еще один электрон. Так образуется общая электронная пара, которая двигается вокруг двух ядер. Если оба взаимодействующих атома принадлежат к сходным по свойствам элементам, если эти элементы близки по своей электроотрицательности, тогда атомы по-честному распределяют между собой электронную пару. Она будет равномерно задерживаться и у того, и у другого атома, участвующего во взаимодействии. [c.188]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    Электростатическая теория (теория ионной, или, иначе, теория гетерополярной связи) была создана немецким ученым Косселем. Согласно этой теории сущностью химической связи является электростатическое притяжение между противоположно заряженными ионами. Например, образование молекулы аммиака электростатическая теория объясняет следующим образом. Нейтральный атом азота во внешнем электронном слое имеет 5 электронов и поэтому обладает стремлением дополнить это число до устойчивого октета (8 электронов). При реакции с атомами водорода электроны трех атомов водорода переходят к атому азота и образуется отрицательный трехвалентный ион азота и три положительных одновалентных иона водорода. В результате взаимного притяжения этих ионов образуется молекула аммиака. [c.33]

    Представления Берцелиуса и Кекуле в дальнейшем привели к более глубоким знаниям и, наконец, к разработке подробной физической теории, объясняющей сущность химических связей. Вначале Фарадей открыл зависимость между химическими и электрическими явлениями, которая была использована Аррениусом в созданной им ионной теории. Это позволило рядом с кекулевской теорией построить электрохимическую теорию, так что создалась система, основанная на представлениях [c.23]

    Устойчивость комплексных соединений в растворах. Константы устойчивости и константы нестойкости. Факторы, влияющие на устойчивость комплексных соединений в растворах температура, хелатный и макроциклический эффекты, заряд центрального иона-комплексообразователя. Теория координационной химической связи метод валентных связей, теория кристаллического поля. Спектрохимический ряд лигандов, энергия стабилизации координационных сфер катионов -металлов. Цвет комплексных соединений и кинетическая подвижность лигандов в координационной сфере. [c.214]

    Необходимо отметить, что в настоящее время еще нет экспериментально подтвержденной единой теории, которая рассматривала бы различные типы химической связи и их возможное совместное существование в одной твердой фазе. Между тем, разработка общей теории природы, химической связи в металлических сплавах особенно необходима, так как свойства металлических сплавов в сильной степени зависят от природы химической связи в решетке. Коррозионная стойкость интерметаллических фаз, очевидно, также должна в сильной степени зависеть от характера химической связи в решетке. Если твердое тело с ионной связью растворяется в жидкой фазе чисто химически, а твердое тело с металлической связью — электрохимически, тогда у твердого тела, имеющего обе эти связи, должны как-то совмещаться два принципиально отличных механизма разрушения кристаллической решетки твердого тела. [c.104]

    При обсуждении природы каталитического крекинга Милликен, Миллс и Облад [35а] пришли к выводу, что образование иона карбония возможно в отсутствии сильной кислоты, но что большинство химических процессов, протекающих при каталитическом крекинге, может быть объяснено на основании теории иона карбония. Они считают, что ион карбония может существовать только в тесной связи с катализатором. [c.89]


    Теперь атом Н имеет на своей валентной орбитали два электрона, подобно гелию, а у атома I восемь электронов, как у Хе. Льюис выдвинул следующий принцип атомы образуют химические связи в результате потери, присоединения или обобществления такого количества электронов, чтобы приобрести завершенную электронную конфигурацию атомов благородных газов. Тип образующейся связи-ионный или ковалентный-зависит от того, происходит ли перенос электронов или их обобществление. Валентность, проявляемая атомами, определяется пропорциями, в которых они должны объединяться, чтобы приобрести электронные конфигурации атомов благородных газов. Теория Льюиса объясняет тип связи и последовательность расположения атомов в молекулах. Однако она не позволяет объяснить геометрию молекул. [c.466]

    Неустойчивость конфигурации d. Ион Сг" + (d ) представляет собой сильный восстановитель, который окисляется, приобретая конфигурацию d . Точно так же другой ион, Мп + (d ), является сильным окислителем и восстанавливается в ион с конфигурацией Наконец, ион Со . также обладающий конфигурацией d, вообще не образует устойчивых комплексов. Любая теория химической связи в координационных комплексах встает перед необходимостью объяснить эту чрезвычайную неустойчивость конфигурации d.  [c.216]

    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]

    Современная теория атомов и молекул неопровержимо убеждает в том, что, несмотря на многообразие химической связи, последняя вместе с тем едина.по своей природе. Хотя понятия ионной и ковалентной связей, являющиеся в значительной степени упрощенными и приближенными, не имеют принципиального значения для раскрытия различных случаев взаимодействия атомов с образованием молекул, рассмотрим эти понятия в свете периодического закона. [c.21]

    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохнмическом ряду, а также са.м факт образования некоторых ком плексов, например, так называемых сэндвичевых соединений — дибензолхрома Сг(СбНб)2, ферроцена Fe ( 51 5)2 и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами. [c.598]

    С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в -оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида. [c.81]

    Хотя способность образовывать комплексы присуща ионам всех металлов, наиболее многочисленные и интересные комплексы образуют переходные элементы. Уже давно стало понятно, что магнитные свойства и окраска комплексов переходных металлов связаны с наличием a-электронов на атомных орбиталях металла. В данном. разделе мы рассмотрим модель химической связи в комплексах переходных металлов, носящую название теории кристаллического поля такая модель очень хорошо объясняет наблюдаемые свойства этих интересных веществ. [c.390]

    Таким образом, в отличие от ковалентных и ионных соединений в металлах небольшое число электронов одновременно связывает большое число ядерных центров, а сами электроны могут перемещаться в металле. Иначе говоря, в металлах имеет место сильно нелокализованная химическая связь. Согласно одной из теорий металл можно рассматривать как плотноупакованную структуру из катионов, связанных друг с другом коллективизированными электронами (электронным газом). [c.105]

    Обсудите пространственное строение нитрат- и фосфат-ионов с позиций теории химической связи. [c.553]

    Мы уже неоднократно упоминали о различиях в физических и химических свойствах между металлами и неметаллами. В гл. 7 и 8 более или менее подробно обсуждались особенности ионной и ковалентной связей. Рассмотрим теперь подробнее характерные физические свойства металлов, а затем постараемся связать их с теорией химической связи в металлах. [c.360]

    Мы убедились, что, исходя из теории кристаллического поля, можно объяснить ряд свойств комплексов переходных металлов. С помощью этой теории можно объяснить многие другие факты помимо рассмотренных нами. Однако получены данные, свидетельствующие о том, что химическая связь между ионами переходных металлов и ли-г андами имеет частично ковалентный характер. Для более строгого описания химической связи в комплексах можно использовать теорию молекулярных орбиталей (см. разд. 8.5 и 8.6). Однако применение теории молекулярных орбиталей к координа- [c.399]

    Разрабатывая теорию химического строения, Бутлеров не ста зил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосыл кой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты элеК тронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один нз них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаиМ ное электростатическое притяжеиие образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]

    Кратко познакомившись с основными методами теории химической связи, перейдем к обсуждению ее свойств. Свойства химической связи проявляются в свойствах различных типов молекул, кристаллов и других объединений атомов и молекул. Ранее считалось, что и природа различных видов связи (ковалентной, ионной, металлической, водородной и др.) различна. Сегодня можно считать, что известные на сегодня виды химической связи едины по своей природе. Поэтому существует возможность единой их классификации. Химическую связь можно подразделить на различные виды. [c.113]

    Современная теория межмолекулярных взаимодействий представляет собой синтез и развитие химической и физической теорий. Главная роль в межмолекулярных взаимодействиях отводится химическим связям, возникающим между атомами, молекулами и ионами. Кроме того, рассматривается кулоновское взаимодействие заряженных частиц, коллективное взаимодействие электронов и ионов металла, полярных молекул с окружающей средой, межмолекулярное отталкивание, обусловленное повышением кинетической энергии электронов при малых межъядерных расстояниях. Считается, что межмолекулярные взаимодействия обусловлены электрическими полями атомных ядер и электронов, из которых состоят атомы и молекулы. Используется условное подразделение взаимодействий на слабые и сильные, близкодействующие и дальнодействующие, специфические и, неспецифические и т. д. [c.25]

    Ионные связи образуют элементы, сильно отличающиеся по электроотрицательности. При этом происходит перемещение электронов от одних атомов к другим и возникает электростатическое взаимодействие между образующимися ионами. Однако полного перехода электронов от одного атома к другому никогда не происходит, а следовательно, чисто ионной связи не бывает. Существование и свойства соединений с другими типами химических связей классическая теория объяснить не может. [c.27]

    В соответствии с рассмотренными теориями образования химической связи в комплексных соединениях можно оценить способн(х ть того или иного элемента к комплексообразованию и определить среди них типичные комплексообразователи. Типичными комплексообразователями считают те элементы, атомы или ионы которых образуют комплексы с несколькими различными лигандамн. [c.364]

    Физическое обоснование идея Абегга и Бодлендера приобрела впервые у Томсона (1904 г.), который на основе своей теории строения атома дал модельное представление об электроотрицательных и электроположительных элементах, их расположении в периодической системе, а также о соединении электроотрицательных и электроположительных элементов с образованием ионной химической связи [19, стр. 29]. [c.247]

    Основные научные исследования посвяш,ены развитию электронных представлений в химии. Предложил (1916) статическую электронную теорию строения атомов и молекул, согласно которой а) атомы благородных газов обладают особенно устойчивой восьмиэлектронной внешней оболочкой (атом гелия — двухэлектронной) б) атомы других элементов во внешней оболочке имеют неполный электронный октет в) образование химического соединения происходит вследствие перехода электронов от атома одного элемента к атому другого элемента и появления ионной химической связи, то есть благодаря электростатическому притяжению. Наиболее устойчивыми должны быть те соединения, в которых валентные электроны распределяются так, чтобы каждый атом был окружен оболочкой, имитирующей электронную оболочку благородного газа. Гипотеза Косселя о гетерополярных связях легла в основу теории ионной связи и гетеровалентности. [22, 324[ [c.258]

    Роль отдачи и присоединения электронов в образовании химической связи впервые рассмотрена немецким ученым Косселем в 1916 г. В том же году американским ученым Льюисом предложена теория образования химической связи с помощью электронных пар, одновременно принадлежащих двум атомам. На базе работ Косселя и Льюиса развилось современное учение о химической связи. Химическая связь осуществляется валентными электронами у 8- и р-элементов внешними электронами, у -электронов внешними пз и предвнешними (п— 1) электронами, у /-элементов пз, (п— 1) и (и— 2)/ электронами. По современным представлениям химическая связь имеет электрическую природу. Но осуществляется она по-разному. Поэтому различают три основных типа химических связей ковалентную, ионную и металлическую. [c.77]

    В- одном случае наружный электрон атома оттягивается атомом другого элемента. В результате оба атома приобретают электрические заряды один атом из-за потери одного или нескольких электронов заряжается положительно, другой вследствие приобретения чужих электронов — отрицательно. Такая связь названа ионной химической связью. Теорию ее разработал в 1915 г. немецкий ученый Коссель. В другом случае каждый из реагирующих атомов выделяет по одному или более электронов на образование одной или нескольких электронных пар, принадлежащих одновременно обеим атомам. Атомы остаются нейтральными, но связываются в молекулу одной или несколькими обобщенными парами электронов. Образующаяся связь названа ковалентной химической связью. Теорию ее впервые предложил английский ученый Льюс в 1916 г. [c.55]

    Ионная связь. Первая научная теория понно химической связи была сформулирована в 1916 г. Косселем. Исходя из того, что атомы гелия (двухэлектронная оболочка), неона п аргона (восьмн-электронные наружные оболочки) химически очень устойчивы, Коссель предположил, что атомам других элементов свойственно стремление приобрести такие устохгчивые наружные оболочки. Наприхмер, атом Л Э, имеющий только 1 электрон на внешней оболочке, стремится его отдать с другой стороны, атом хлора, у ко- [c.257]

    Проблема взаимосвязи структуры и свойств вещества затрагивается в книге еще не раз так, для описания кристаллов используются соответственно их структурным особенностям зонная теория или теория вандер-ваальсовых сил, а для объяснения своеобразия координационных соединений последовательно применяются разные подходы электростатическая модель ионной связи, метод ВС (или локализованных МО), теория кристаллического поля и, наконец, теория поля лигандов (или делокализо-ванных МО). Таким образом, читатель получает возможность ознакомиться с проблемами химической связи на самых разных уровнях-от доквантового до современного. [c.7]

    Объяснение химической связи в комплексах с помощью электростатических представлений. Начало разработки теории, объясняю1цей образование комплексных соединений, связано с исследованиями Косселя и Магнуса (Германия), проводимыми ими в 1916—1922 гг. В ее основу были положены электростатические представления. Ион-комплексообразователь притягивает к себе как ионы противоположного знака, так н полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга, прп этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.119]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    Метод молекулярных орбиталей. Метод валентных связей дал удовлетворительное истолкование целому ряду фактов, таких, как нанравленность связей, способность атомов к образованию определенного числа связей, особенности структуры и свойств ряда молекул. Одиако этот метод не объяснил существования довольно прочного молекулярного иона водорода Н, , содержащего только один электрон, а также упрочения химической связи при отрыве электронов от некоторых молекул. Для этих фактов была предложена другая теория, получившая название метода м.ол кулярных орбиталей. [c.49]

    Основываясь на химических свойствах веществ и на ранней атомной теории прежде различали два типа химических связей — ионную и ковалентную, а стабильность или инертность веществ ставили в зависимость от заполнения оболочек электронной конфигурации инертных газов (ns ns np , п — 1) d ns np и т. д.). Позднейшими исследованиями было найдено, что мера стабильности связана также с полузаполненными или заполненными подоболочками электронов (например, rtd , nd ). [c.20]

    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Достижения квантовой химии в настоящее время используются для интерпретации многих химических реакций. Однако современное состояние этой теории таково, что за исключением простейших молекул или ионов (Н ,Н2 , Н2), расчеты могут быть проведены только приближенно, и то лишь при использовании сложного математического аппарата. Чем точнее эти расчеты, тем дальше они, в большинстве случаев, от простых химических формул из них исчезают элементы наглядности, полученные результаты трудно поддаются физической интерпретации и уже не могут быть использованы химиками в их повседневной работе по расщеплению и синтезу сложных органических веществ. Поэтому был создан ряд вспомогательных, так называемых качественных электронных теорий химической связи (Вейтц, Робинсон, Ингольд, Арндт, Полинг, Слейтер, Хюккель, Мулликен и др.), которые нашли широкое распространение и дают плодотворные результаты в построении феноменологической органической химии. Впрочем, необходимо всегда знать границы применения этих приблил<.еиных представлений, и они будут часто указываться в настоящей книге. Наконец, следует отметить, что согласно квантовой механике, невозможно создать точную и вместе с тем наглядную теорию материи, так как любая такая теория неизбежно окажется лишь oгpaничeIiнo правильной. [c.24]

    В разд. 8.6 мы уже говорили, что вещества, содержащие неспаренные электроны, обнаруживают парамагнетизм, т.е. способность втягиваться в магнитное поле. Величина парамагнетизма обусловлена числом неспаренных электронов. Вещества, не содержащие неспаренных электронов, диамагнитны они слабо выталкиваются магнитным полем. Таким образом, один из способов установления числа неспаренных электронов в веществе заключается в измерении воздействия магнитного поля на образец данного вещества при помощи способа, схематически показанного на рис. 23.15. Массу исследуемого вещества измеряют сначала в отсутствие магнитного поля, а затем в магнитном поле. Если образец имеет большую кажущуюся массу в присутствии магнитного поля, это означает, что данное вещество втягивается магнитным полем и, следовательно, является парамагнитным. Если же образец имеет меньшую кажущуюся массу в присутствии магнитного поля, это означает, что вещество выталкивается магнитным полем и, следовательно, является диамагнитным. При изучении комплексов переходных металлов представляет интерес выяснение зависимости между числом неспаренных электронов, связанных с конкретным ионом металла, и природой окружающих лигандов. Например, важно понять, почему комплекс Со(Т Нз) не содержит неспаренных апектронов, а комплекс СоРв содержит четыре неспаренных электрона, хотя оба комплекса включают кобальт(1П). Всякая теория, претендующая на правильное описание химической связи, должна давать удовлетворительное объяснение этому наблюдению. [c.387]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]


Смотреть страницы где упоминается термин Теория ионной химической связи: [c.36]    [c.76]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.308 , c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Связь теория

Теория химическои связи

Теория химической связи

ХИМИЧЕСКАЯ СВЯЗЬ Ионная связь

Химическая ионная

Химическая связь

Химическая связь ионная

Химическая связь связь

Химическая теория

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте