Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбер давление

    Насыщенный абсорбент поступает в турбину 3, где снижается его давление с давления абсорбции до давления десорбции. Турбина 3 служит приводом насоса, что существенно снижает энергетические затраты на перекачку абсорбента. Насыщенный абсорбент после снижения давления поступает в теплообменник 5 с целью повышения его температуры и далее в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент VI, предназначенный для снижения парциального давления целевых компонентов в газовой фазе с целью повышения движущей силы массопередачи. Из верхней части десорбера 6 уходят целевые компоненты V, из нижней — регенерированный абсорбент III. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 насосом через воздушный или водяной холодильник 2 возвращается в абсорбер 1. [c.72]


    Сущность процесса осушки газа жидкими поглотителями заключается в следующем (рис. 70). При контакте абсорбента с газом в цилиндрическом аппарате — абсорбере, в который снизу подается газ, а сверху жидкость — абсорбент, пары воды поглощаются абсорбентом. Внутри абсорбера помещены перегородки (тарелки) для улучшения контакта между абсорбентом и газом. Процесс ведется при температуре около 20 С и давлении 20—60 ат. Сверху абсорбера выходит осушенный газ, а снизу — обводненный абсорбент. Обводненный абсорбент поступает в другой аппарат — десорбер для отгонки воды. Этот процесс проводят при повышенных температурах, но не выше 170° С для диэтиленгликоля и 191° С для триэтиленгликоля, так как выше этих температур гликоли разлагаются. [c.157]

    Выходящий с низа колонны 2 насыщенный раствор МЭА нагревается в теплообменниках 4 до 80— 90 °С регенерированным раствором МЭА и поступает в десорбер 6. Десорбер представляет собой колонный аппарат, оборудованный 14—16 ситчатыми или желобчатыми тарелками и работающий при давлении 0,15—0,20 МПа. Низ колонны отгорожен глухой тарелкой, с которой раствор МЭА перетекает в кипятильник 8, где подогревается и с температурой около 130 °С возвращается в колонну 2 под глухую тарелку. В десорбере удаляются остатки сероводорода и диоксида углерода. Регенерированный раствор МЭА насосом 7 направляется в теплообменники 4, водяной холодильник 5 и с температурой 20—30 °С возвращается в колонну 2. Туда же насосом 5 подается свежий раствор МЭА. [c.58]

    Режим работы абсорбера-десорбера давление 30 ата, охлаждение аб- [c.172]

    Из первой, нижней, секции половина метанола направляется на десорбцию в четырехступенчатый десорбер 9. Перед десорбером метанол предварительно охлаждается в аммиачном холодильнике до —42 °С. В нижней первой ступени этого десорбера давление снижается до 0,7 МН/м , газы десорбции, содержащие около 60% СОз, водород и другие примеси, поступают на всасывающую линию компрессора возвратных газов. [c.205]

    Для газоперерабатывающих заводов, построенных в США и Канаде по схеме НТА, характерны следующие технологические параметры рабочая температура в абсорбере —20н—60 °С рабочее давление 3,5—6,5 МПа давление в десорбере 1—2 МПа, в АОК 2—3,5 МПа. Извлечение этана 25—50%, пропана 80— 99%, бутана и высших 100%- [c.161]

    По конструкции абсорберы и десорберы bq многом сходны с ректификационными колоннами. Они также Подразделяются на тарельчатые и насадочные и могут работать под избыточным или атмосферным давлением и под вакуумом. [c.36]

    Суспензия отработанного адсорбента перетекает в десорбер 8, где происходит десорбция рафината II растворителем, предварительно нагретым в теплообменнике 15 и подогревателе И. В адсорбер и десорбер, ниже подачи раствора сырья и нагретого растворителя, для создания гидравлического затвора вводится растворитель. Далее суспензия адсорбента опускается в ступенчато-противоточную сушилку 7 с псевдоожиженным слоем. Псевдоожижение массы частиц адсорбента создается с помощью водяного пара (давлением 1 МПа). Для сообщения тепла, [c.93]


    Работающие в стадии десорбции аппараты 8 к 14 продуваются перегретым в змеевике печи 5 газообразным аммиаком. Последний в смеси с вытесненными н-парафинами проходит теплообменники 9 и 13, а затем конденсатор-холодильник 10, конденсат отделяется от газообразного аммиака в сепараторе 11. В работающем при менее высоком давлении сепараторе 12 из жидкости выделяется растворенный аммиак. Вспомогательным компрессором 18 аммиак подается на прием компрессора 3 повышенного давления. В секции адсорберов — десорберов коммуникации системы автоматического переключения аппаратов с одной операции на другую не показаны. [c.97]

    Регенератор 16 тарельчатого типа (отпарная колонна) работает при давлении, близком к атмосферному, и температуре 100—ПО °С. Отработанный раствор щелочи подается в верхнюю часть аппарата, водяной пар (давлением 0,3 МПа) — в нижнюю. Чтобы избежать уноса испарившейся воды, температуру вверху регенератора держат на уровне 60 °С с помощью флегмы, подаваемой насосом 5 выше ввода раствора. Температура флегмы регулируется холодильником 14. Газ, выходящий с верха десорбера, может содержать до 20 % (об.) меркаптанов, до 70 % (об.) метана и диоксида углерода. Этот газ направляется в печи. Раствор щелочи, содержащий еще некоторое количество диоксида углерода, с низа регенератора забирается насосом 8 и подается в колонну 17, где продувается нагретым до 70—90 °С воздухом. Воздух с диоксидом углерода выводится в атмосферу, а щелочные сточные воды с низа колонны 17 направляются в промышленную канализацию. [c.116]

    В средней части десорбера 12 поддерживается разрежение (остаточное давление порядка 0,2 атм) и температура 60—70°С. В этих условиях происходит практически полное выделение ацетилена из раствора. Выделившийся концентрированный ацетилен, содержащий некоторое количество ацетиленовых углеводородов, отсасывается вакуум-насосом 19 через конденсатор 9 десорбера второй ступени, где конденсируются пары растворителя. [c.14]

    На ряде заводов вместо стабилизации проводится двухступенчатая десорбция. В этом случае для частичной конденсации верхнего продукта в первом десорбере поддерживается высокое давление. Окончательная десорбция осуществляется во втором десорбере при сравнительно низком давлении. Верхний продукт полностью конденсируется и перекачивается в конечный конденсатор высокого давления. Указанный принцип, в частности, применяется Шелл ойл компани (Тексас, США). Давление в десорбере высокого давления на установках этой фирмы поддерживается порядка 12 ати, а в десорбере низкого давления 1,3 ати. [c.21]

    Рассчитать десорбер для регенерации насыщенного раствора диэтиленгликоля, состав которого дан в табл. 2.8, при следующих исходных данных количество раствора диэтиленгликоля 0гл.и=5160 кг/ч давление в аппарате я=0,12 МПа. [c.71]

    Схемы промышленных установок по разделению углеводородов различаются между собой в зависимости от состава перерабатываемого сырья, требуемой глубины извлечения компонентов и других факторов. В качестве примера схем современных крупных газобензиновых заводов можно привести схему газобензинового завода фирмы Филлипс петролеум , перерабатывающ,его попутный газ с двух промысловых компрессорных станций и одной газосборной станции, расположенной на самом заводе (рис. 2). Очиш енный от сероводорода газ компримируется до 56 ати и при этом давлении поступает на извлечение тяжелых углеводородов в два параллельно работающих абсорбера. Насыщенное масло из абсорберов проходит через теплообменники, где нагревается горячим регенерированным маслом и направляется в выветриватель для удаления неконденсирующихся газов. После выветривателя насыщенное масло нагревается в змеевике трубчатой печи до 215° и поступает в десорбер высокого давления, работающий под давлением 17,5 ати. В десорбере из масла удаляется основная часть тяжелых углеводородов. Окончательная десорбция углеводородов протекает во втором десорбере при давлении 2,8 ати. Отпаривание углеводородов в обоих десорберах производится при помощи острого пара. [c.22]

    Раствор моноэтаноламина рекомендуется регенерировать в десорбере ири следующих параметрах давление 0,06—0,09 МПа, максимальная температура в десорбере 116—122°С. На многих установках десорбер имеет 15—20 тарелок или слой насадки, эквивалентный 3—4 т.т. Для уменьшения потерь моноэтаноламина с парами- и газами 30—35% тарелок должны располагаться выше точки ввода сырья в колонну. [c.286]

    На указанном заводе, а также на некоторых других новых заводах наблюдается стремление к использованию в качестве теплоносителя не пара, а циркулирующего агента, нагреваемого в специальной печи. Указанный способ позволяет работать прп более высоких температурах, что необходимо в связи с применением повышенных давлений, требующих повышения температуры при регенерации абсорбента. В качестве циркулирующего агента, как правило, применяется горячий регенерированный абсорбент, который отдает свое тепло насыщенному абсорбенту в десорбере п кипятильниках фракционирующих колонн. Кроме того, часть тепла абсорбента расходуется на получение пара, используемого для отпарки абсорбента нри его регенерации. [c.24]

    Температура и давление в аппарате. Температура в верхней части десорбера должна быть такой, чтобы унос раствора МЭА из аппарата был минимальны . Этому условию соответствует температура [c.35]


    Колонна имеет 19 тарелок. Параметры работы колонны следующие давление Р = 0,75 МПа, температура верха 67 °С, температура низа 167 °С. Газы стабилизации — верхний продукт колонны 11 — после сероочистки (абсорбер 17) направляются на установку выделения ШФУ (рис. П1.89, в), состоящей из двух последовательно включенных колонн абсорбционно-отпарной (АОК) 18 и десорбера 20. В АОК из газов стабилизации извлекаются пропан + высшие. Верхний продукт (газы деэтанизации) отводится в систему газоснабжения, а насыщенный пропаном + высшие абсорбент (нижний продукт) направляется в десорбер 20, где отпариваются поглощенные углеводороды. Верхний продукт десорбера 20 — ШФУ — отводится на склад готовой продукции, а тощий абсорбент (нижний продукт) возвращается в цикл абсорбции на орошение АОК. В качестве абсорбента используется стабильный конденсат — товарный продукт завода. Проектные параметры работы АОК следующие давление Р = 0,6 МПа, температура верха = 59 °С, температура газа = 82 °С. Параметры работы десорбера давление Р = 1,5 МПа, температура верха /а = 127 °С, температура низа = 160 °С. Производительность установкн комплексной подготовки газа 5 млрд. м газа в год, каждая УКПГ состоит из четырех технологических линий. Производительность установки стабилизации конденсата 1,04 млн. т в год. Основные технические решения Оренбургского комплекса по переработке конденсатсодержащего газа вполне соответствуют современному уровню. [c.260]

    ВЫХОДЯЩИЙ сверху абсорбера, пропускается через систему очистки от компрессорного масла и направляется потребителям. Абсорбент в основном поглощает углеводороды начиная от пропана и выше и небольшую часть метана и этана. Насыщенный абсорбент выходит снизу абсорбера и поступает в выветриватель, где за счет снижения давления выделяются метан и этан. После выветривателя насыщенный абсорбент проходит теплообменник, паровой подогреватель и направляется и десорбер, где выделяются поглощенные углеводороды. [c.166]

    I — КОЛОННЫ, работающие при атмосферном и пониженном давлениях 2 —вакуумные колонны 3 абсорберы и десорберы [c.86]

    Блок абсорбции-десорбции (фракционирующий абсорбер). Во фракционирующем абсорбере контролируется и регулируется подача абсорбента в абсорбер II ступени, в зависимости от содержания С5 в уходящем сухом газе подача абсорбента в абсорбер-десорбер в зависимости от содержания Сз в уходящем сверху газе расход деэтаиизированной фракции н.к.— 140 °С и абсорбента, выходящего из абсорбера, в зависимости от содержания Сг в жидкой фазе уровень в кипятильнике фракционирующего абсорбента давление. Излишнее тепло в абсорбере снимается циркулияцией абсорбента через холодильники. Температура под тарелкой, с которой забирается абсорбент, регулируется подачей охлажденного абсорбента. Расход циркуляционного абсорбента регистрируется. [c.224]

    С учетом термической стойкости раствора МЭА и для предотвращения коррозии оборудования давление в аппарате должно быть не выше я = 0,167 МПа [14, с. 139]. Принимаем давление по высоте аппарата одинаковым и равным л=0,12 МПа это не окажет существенного влияния на результаты дальнейших расчетов, так как перепад давления в десорбере зависит от числа и типа тарелок. [c.37]

    Влажный газ I поступает в абсорбер 1, где при повышенном дав.лении производится осушка газа. В качестве абсорбента в верхнюю часть аппарата подается диэтиленгликоль (ДЭГ). Отводимый снизу абсорбера отработанный раствор III (насыщенный абсорбент) подогревается в теплообменнике 2 и вводится в десорбер 3, работающий при давлении, близком к атмосферному. Тепло, необходимое для испарения влаги, подводится в десорбер с помощью испарителя 7. [c.57]

    Для регенерации раствора гликоля до концентрации 99% (масс.) и более применяется отдувочный или отпарной газ, подаваемый под первую тарелку десорбера. Отдувочный газ уменьшает парциальное давление водяного пара и способствует переходу воды из жидкой фазы в паровую. [c.72]

    I — печь 2 — фильтр для очистки от сажи з — колонна для выделения гомологов ацетилена 4 — компрессор 5 — абсорбер (давление 5—10 atnu) 6 — десорбер (давление i ama) 7 — вакуум-десорбер (давление 0,2 ama) 8 — вакуум-десорбер (давление 0,1 ama) 9 — вакуум-насос. [c.123]

    В первом десорбере давление поддерживается 3,6 МПа. С целью интенсификации процесса выделения СО2 из раствора в низ десорбера подают предварительно подолретый азот. Для улавливания HgS, уносимого с СО2, в верх десорбера подается селексол. Газы с верха десорбера компримируются и подаются в поток газа с верха абсорбера. [c.89]

    Определить основные размеры комбинированного газосепа-ратора-водоотделителя, в крторый из десорбера, после конденсации и охлаждения др 35° С, поступает смесь, состоящая из 80G0 кГ час сырого газового бензина, 2500 кГ шс газообраз- ых продуктов и 3000 Kr/iia водяного конденсата. Часть бензина, в количестве 3600 кГ/час, в качестве орошения возвращается наверх ре тнфикационной части десорбера. Давление в сепараторе—3 ата. [c.160]

    Принципиальная схема очистки газа этаноламином приведена иа рис. 1.9. Газ поступает в нижнюю часть абсорбера /, Раствор этаполамина подается вверх и стекает вниз, протнвотч >ком к raj . Температура абсорбции 25- 40"Г Очтнечный газ уходит сверху. Раствор этаноламина, насыщенный сероводородом, уходит с низа абсорбера, нагревается до 110°С в теплообменнике 3 за счет тепла регенерированного раствора, выходящего из десорбера 4, проходит конденсатор 5 и поступает в верхнюю часть десорбера. Давление в десорбере 0,25 МПа, температура низа примерно 130°С (поддерл ивается при помощи выносного кипятильника 8). С верха десорбера смесь паров воды, сероводорода и диоксида углерода, имеющая температуру 120— 125 °С, уходит в аппарат 5, где конденсируются пары воды, затем охлаждается в холодильнике 6 и поступает в сепаратор 7, где газы отделяются от конденсата. Конденсат насосом подают в десорбер, а отходящий газ, состоящий в основном из сероводорода, направляют на производство серной кислоты или серы. [c.53]

    За рабочую в десорбере принимается температура на 3— 5°С ниже средней между температурами насыщенного абсорбента и отпариого газа. При заданном давлении и рабочей температуре определяются константы равновесия всех компонентов, подлежащих отпарке. [c.85]

    Концентрация регенерированного абсорбента определяется по рис. 47 при температуре контакта 30 °С и требуемой точке росы —20 °С xi = 99,5 мае. %. Концентрация насыщенного абсорбента выбирается исходя из практических соображений, а затем проверяется по расчету регенерации абсорбента Х2= = 96 мае. %, В процессе разработки месторождения при увели-чепип влажности газа с падением давления коицептрацню насыщенного абсорбента можно изменять, что позволит поддерживать в определенных пределах скорость циркуляции абсорбента. Это необходимо для обеспечения пормальпого газогидродинамического режима работы тарелок в абсорбере и десорбере. [c.145]

    А д и п - п р о ц е с с. В качестве химического поглотителя ис-П0Л1.зуется 40% Ный водный раствор диизопропаноламипа (ДИПА). Рабочие параметры процесса можно щироко варьировать. Давление абсорбции может изменяться от атмосферного до 7 МПа и более, температура — от 35 до 60 °С давление в десорбере близко к атмосферному для нагрева можно использовать пар низкого давления. [c.175]

    Технологический процесс получения ацетилена этим способом основан на термоокислительном пиролизе метана с кислородом (соотношение кислорода и метана должно быть в пределах 0,58— 0,62) в реакторах при 1400—1500 °С и избыточном давлении. Процесс состоит из следующих стадий подогрева метана и кислорода пиролиза метана и закалки пирогаза очистки пирогазов от сажл в скрубберах или электрофильтрах компримирования пирогаза до давления 0,8—1,2 МПа и абсорбции ацетилена и его гомологов селективным растворителем (метилпирролидоном, диметилформ-амидом) фракционной десорбции газов в десорбере первой ступени (при давлении 20 кПа) и второй ступени (при вакууме 80 кПа) с выделением при 80—90 °С чистого ацетилена и нагреве с водяным паром (ПО—116°С) фракции высших гомологов ацетилена регенерации растворителя (удаления твердых продуктов полимеризации гомологов ацетилена) сжигания отходов производства в печи (сажи из сажеотстойников продуктов "полимеризации, выделенных при регенерации растворителя высших гомологов ацетилена, полученных на второй ступени фракционной десорбции). [c.28]

    Из аппарата 2 абсорбент, содержащий растворенные газы, поступает в десорбер 8 первой ступени, где часть газов выделяется из раствора вследствие снижения давления с 10 до 1,2 ат и продувки растворителя ацетиленом, поступающим из десорбера 12 второй ступени. В десорбере 8 происходит почти полное разделение газов большая часть ацетилена и другие ацетиленовые углеводороды остаются в растворе, а часть ацетилена и остальные газы вытесняются из раствора. Эта газовая смесь — так называемый возвратный газ, содержащий до 65% С2Н2 и примеси (СО2, СО, Нг и др.), компрессором направляется в абсорбер 2. Растворитель, вытекающий из десорбера 8 первой ступени, перека чивается в десорбер 12 второй ступени, предварительно нагреваясь в теплообменнике 13. [c.14]

    На рис. 4 была показана принципиальная схема процесса концентрирования ацетилена селективным растворителем, оснащенная необходимыми контрольно-измерительными приборами. Для поддержания в абсорбере и десорберах требуемого давления устанавливают сле-дующг1б регуляторы давления на линии синтез-газа— после абсорбера, на линии возвратных газов — после десорбера первой ступени и на линии ацетилена-кои-центрата. Давление регулируется также во всасывающей линии вакуум-эжекционного насоса. Пр1Н падении давления ниже допустимого предела часть газа отводится путем авто.матического переключения с линии нагнетания на всасывание, что позволяет поддерживать требуемый вакуум в систе.ме. [c.102]

    Десорбцию проводят при относительно повышенных температурах (160—200° С) и пониженных давлениях (3—5 ат). Для десорбции углеводородов из насыщенного абсо"рбента требуется, чтобы парциальное давление извлекаемого компонента в газовой фазе было ниже, чем в жидкой. В качестве десорбирующего агента обычно применяют острый водяной пар. Отпаренные тяжелые углеводороды и водяной пар отводятся сверху десорбера, проходят конденсатор-холодильник и поступают в водоотделитель. Из водоотделителя вода выводится снизу, часть жидких углеводородов возвращается в десорбер на орошение, а балансовое количество поступает в емкость нестабильного газового бензина. Снизу десорбера выходит регенерированный абсорбент, который в теплообменнике отдает свое тепло насыщенному абсорбенту, охлаждается в холодильнике и возвращается наверх абсорбера. [c.166]

    Пары абсорбента, поднимаясь вверх, постепенно охлаждаются и, конденсируясь, отдают тепло стекающей навстречу 1< 1дкости, из которой выпариваются бензиновые углеводороды. Наличие в пото ке водяных паров, уменьшающих парциальное давление в системе, способствует лучшей отпарке бензиновых углеводородов. Смесь паров углеводородов и водяного пара поступает в верхнюю часть десорбера. Навстречу им стекает поток холодного орошения, назначение которого — сконденсировать и осадить в жидкой фазе легкие фракции абсорбента, увлеченные потоком паров. Количество подаваемого холодного орошения регулируют в зависимости от заданной температуры верхней части колонны. [c.144]

    Газы направляются в абсорбер-десорбер, а жидкая фаза через подогреватель Т-612 поступает во вторую ко.юниу стабилизации К-603, где отгоняется пропан и бутан и таким образом устанавливается требуемое давление насыщенных паров продукта-рнфор-мата. [c.53]


Смотреть страницы где упоминается термин Десорбер давление: [c.361]    [c.79]    [c.98]    [c.77]    [c.90]    [c.157]    [c.270]    [c.142]    [c.41]    [c.15]    [c.157]    [c.159]    [c.23]    [c.103]   
Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. Изд.3 (1978) -- [ c.30 ]

Расчеты основных процессов и аппаратов переработки углеводородных газов (1983) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Выбор давления и температуры в абсорберах и десорберах

Давление в абсорбере и десорбере

Десорбер

Реактор давление у основания десорбер



© 2024 chem21.info Реклама на сайте