Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галоиды положительные

    На подвижность атома галоида положительно влияет присутствие ароматического радикала при углеродном атоме, связанном с галоидом, например в хлористом бензиле. Особенно сильно это влияние сказывается в трифенилхлорметане, который под действием горячей воды гидролизуется в течение нескольких минут, образуя трифенилкарбинол. [c.539]

    В орто- и пара-положениях к галоиду положительный заряд несколько уменьшается вследствие эффекта сопряжения. Поэтому наибольшей подвижностью обладает атом галоида, находящийся в мета-положении по отношению к другому атому галоида. [c.342]


    При прибавлении галоидов при температурах нитрования галоидалкилы диссоциируют, а образующиеся галоидводороды окисляются азотной кислотой с образованием свободных галоидов, которые и являются источником образования новых алкильных радикалов. Действительно, добавки небольших количеств хлора или брома при таких реакциях нитрования оказывают заметное положительное влияние. [c.81]

    Известно, что двойная связь непредельных углеводородов подвергается а аке электрофильных реагентов и нечувствительна к нуклеофил ьным реагентам. Положительно поляризованный атом галоида атакует отрицательно заряженный атом углерода  [c.195]

    Постоянство ориентации органических диполей на поверхности раствора можно объяснить тем, что углеводородный радикал частично выходит в газовую фазу, и органические молекулы представляют собой как бы поплавки, плавающие в вертикальном положении на поверхности раствора. Такая модель, развитая в работах И. Лэнгмюра и Л. Г. Гурвича, подтверждается тем, что при переходе от одного спирта к другому с иной длиной цепи предельный адсорбционный скачок потенциала остается почти постоянным (фдг 350 мв). У эфиров адсорбционный скачок больше, так как он обусловлен наличием двух связей С—О в молекуле простого эфира (фдг 550 мв). Доказательством данной ориентации органических молекул является также тот факт, что введение галоидов в углеводородную часть молекулы органического вещества уменьшает положительный скачок потенциала или изменяет знак Дф. В табл. 3 приведены значения фл для хлорзамещенных уксусных кислот. [c.95]

    Однако, если атомы водорода в молекулах этих соединений замещены атомами галоидов, то ситуация резко изменяется. Так, замена Н на F приводит к тому, что поверхностная активность органического вещества оказывается выше на границе раствор/ воздух, а замена Н на С1, Вг или I приводит, наоборот, к более высокой поверхностной активности на границе раствор/ртуть, причем эффект возрастает при переходе от хлора к брому и далее к йоду. Полученные результаты указывают на то, что специфическое взаимодействие с поверхностью ртути растет в ряду F< < H< i< Br< I. Причиной этого является усиление в том же ряду донорно-акцепторного взаимодействия между органической молекулой и поверхностью ртути, при котором электроны с атомов С1, Вг и I могут переходить на уровни зоны проводимости металла. Поэтому одновременно с увеличением поверхностной активности происходит соответствующее изменение сдвига потенциала нулевого заряда А д=о, вызванного адсорбцией органического вещества уменьшение положительного, а затем рост отрицательного значения Д д=о. [c.42]


    Когда в растворе присутствуют ионы СГ, N0 а, возникают соответствующие смешанные производные. Если первой стадией присоединения галоида является атака молекулы этилена положительно заряженным бромом Вг ", то повышение электронной плотности л-связи дол>Кно ускорять, [c.251]

    Очевидно, что атомы щелочных и щелочноземельных металлов могут достигнуть этого, теряя электроны и образуя, следовательно, положительные ионы, между тем как, например, атомы галоидов должны захватить для этой цели электрон, т. е. образовать отрицательный ион. Действительно, атомы Ма, К, КЬ, Сз, теряя электрон, образуют ионы, имеющие соответственно оболочки Ые, Аг, Кг и Хе. Для того чтобы иметь такие оболочки, атомы Р, С1, Вг, I должны захватить электрон, т. е. образовать отрицательные ионы. Это стремление образовать ионы, подобные атомам благородных газов, проявляется в том, что у щелочных и щелочноземельных металлов малы потенциалы ионизации (работа отрыва электронов), а у атомов галоидов имеет место сродство к электрону (выигрывается работа при захвате электрона). При встрече атома первого сорта (М) с атомом второго сорта (X) может произойти переход электрона от к X с образованием ионов М " и Х и молекулы М Х . В случае встречи щелочного и галоидного атомов видно, какой из них образует положительный, а какой отрицательный ион. В общем случае это зависит от соотношения величин потенциалов ионизации и сродства атомов к электрону. [c.465]

    Как видно из приводимых электронных структур, атомы галоидов имеют 7 электронов во внешнем слое, Основываясь на этом, можно наметить некоторые черты их химической характеристики так как до устойчивой конфигурации внещнего слоя не хватает лишь по одному электрону, наиболее типичными для галоидов должны быть соединения, в которых эти элементы играют роль одновалентных металлоидов. С другой стороны, их максимальную положительную валентность можно ожидать равной семи. [c.238]

    Структура внешнего слоя атомов серы, селена и его аналогов обусловливает их преимущественно металлоидный характер с максимальной отрицательной валентностью, равной двум. При этом рассматриваемые элементы должны быть менее активными металлоидами, чем стоящие с ними в одном горизонтальном ряду галоиды (так как последним не хватает до устойчивой конфигурации лишь по одному электрону). Максимальную положительную валентность серы, селена и его аналогов можно ожидать равной шести, причем электроны должны отдаваться ими легче, чем стоящими в том же горизонтальном ряду галоидами. [c.311]

    Соляную кислоту применяют в количестве 4—6 молей на 1 моль амина, однохлористую медь— в количестве от 0,2 до 0,33 моля и даже до 1 моля на 1 моль амина. Скорость реакции зависит от присутствия заместителей в ядре. Положительное влияние на скорость и выходы про-, дуктов реакции оказывает нитрогруппа, а также галоид в орто- и пара-положении в то время как наличие в том же положении группы СНз (а также группы ОС Hg) отрицательно влияет на скорость реакции и ее выход. [c.458]

    В предложенном механизме электрофильный агент показан как уже образовавшийся в условиях реакции и принимающий в ней участие. Так происходит, по-видимому, при меркурировании, где реакция, вероятно, включает участие иона двухвалентной ртути (до некоторой степени сольватированного), и при нитровании смесью кислот, где в качестве промежуточного соединения, как было показано, должен участвовать питроний-ион NOj . Галоидирование при обычных условиях, по-видимому, не включает участие положительно заряженных промежуточных соединений, как С1 и Вг" , но вместо них, вероятно, включает образование поляризованных молекул галоидов, которые переносят эти промежу- [c.410]

    Наряду со свободной НСЮ предлагается применять для хлоргидринирования непредельных соединений эфиры НСЮ - алкилгипохлориты, в основном — треиг-бутилги-похлорит [88, 113-119]. Применение эфиров НСЮ позволяет вести реакцию с нерастворимыми в водной среде веществами в гомогенной среде. Положительный галоид атакует от-риц ательный конец двойной связи, а вторая атакующая частица зависит от растворителя. Например, реакция этилена с ттгреттг-бутилгипохлоритом в этиленхлоргидрине приводит к р,3 -дихлорэтиловому эфиру [118], а в воде — к этилен-хлоргидрину [114]. [c.30]

    Меервейн рассматрнвал эту реакцию как электрофильное замещение. Он считал, что атом галоида перемещается без электронной пары, которая связывала его с атомом углеро.ча, т. е. в виде катиона, и обменивается местами с атомом во.аорода, также имею-И1ИМ положительный заряд. [c.482]

    Для объяснения po.)in, которую играют переносчики га-лонда, предложена теория, согласно которой эти вещества сначала вступают в реакцию с галоидом, образуя галоидные соли , состоящие из положительно заряженного иона галоида и отрицательно заряженного комплексного иона. Затем катион галоида з.амещаст атом водорода в бензольном ядре  [c.512]

    Одни из заместителей, ориентирующих главным образом в иета-положение, например группа [К(СНз)з+], явно обладают положительным зарядом другие, тоже относящиеся к заместителям П рода (NO2, N, СООН, СНО, SO3H и т. д.), вероятно, влияют на распределение электронов в молекуле бензола аналогичнгмм образом. С другой стороны, заместители, ориентирующие преимущественно в орто- и пара-положение (ОН, галоиды, СНз, NHA и т. д.), согласно электронной теории, вызывают такое смещение электронов, какое должны вызывать электронодонорные группы. [c.517]


    По современным воззрениям, активирующие свойства галоидных ионов основаны на очень высокой энергии адсорбции их металшичбской поверхностью и на вытеснении кислорода, необ-ходимото для пассивации. При этом в концентрированных растворах серной кислоты галоидные ионы, адсорбируясь на по-верхшсти некоторых сталей, сами могут приводить к пассивации, Такой эффект может быть объяснен следующим. При адсорбции галоидов точка нулевого заряда железа смещается в сторону положительных потенциалов одновременно с этим потенциал саморастворения железа в серной кислоте становится более электроотрицательным. В таком случае из-за изменения фр потенцнала процесс ионизации железа затрудняется. [c.407]

    Иначе обстоит дело в подгруппе марганца. Здесь незаконченными являются уже два внешних слоя. Так как в наиболее удаленном от ядра слое находится только 2 электрона, тенденции к дальнейшему присоединению электронов не будет. Наоборот, при их отдаче в образовании валентных связен могут принять участие и 5 электронов следующего слоя. Поэтому максимальную положительную галентность элементов подгруппы марганца также можно ожидать равной семи. Таким образом, по своим основным тенденциям элементы обеих подгрупп сильно отличаются друг от друга тогда как галоиды должны в первую очередь характеризоваться резко выраженной металлоидностью, марганец и его аналоги будут вести себя как металлы. [c.238]

    Исследование влияния различных материалов и катализаторов на процесс парофазного нитрования привело к заключению, что положительное каталитическое действие наблюдается лишь при добавке галоидов — хлора и брома [185]. Такие вещества, как силикагель, железо, медь, свинец, окислы этих и других тяжелых металлов, снижают конверсию азотной кислоты в нитропарафипы. Снижение конверсии наблюдается также при проведении процесса в реакторе из нержавеющей стали типа 18-8, но это действие стали может быть устранено пассивацией внутренних стенок реактора нанесением на них нитратов щелочных металлов. Материалами, не влияющими заметно на реакцию нитрования, являются стекло, кварц, золото, платина [174], но этот список представляется неполным. [c.584]

    Цис-кзомеры 1,2-дигалоидных производных этилена должны иметь дипольный момент тронс-изомеры (при одинаковых атомах галоида) не могут иметь дипольного момента вследствие внутренней компенсации положительных и отрицательных зарядов  [c.242]

    Возможное объяснение основано на эффекте гиперконъюгации. Считают, что электроны каждой из трех С—Н-овязей участвуют в ом ещени таким же образом, как и неподеленные электроны кислорода, азота или галоида, но в меньшей степени. Кроме того, атака орто- и пара-положений нуклеофильным агентом приводит к перемещению части положительного заряда на углерод 1 с образованием третичного карбониевого иона и понижением энергии системы. [c.143]

    Наличие в этих соединениях большого числа электроноиритяги-вающих атомов галоида приводит к смещению электронов, достаточному для того, чтобы сделать атом углерода боковой цепи положительно заряженным по отношению к кольцу. [c.143]

    Ниже в качестве примера рассматривается работа галоидного (ионизационного) течеиска-теля. Принцип его действия основан на эффекте эмиссии положительных ионов, испускаемых раскаленной платиной, резко возрастающем в присутствии паров галоидов. Этот эффект заметен при парциальном давлении паров галоида порядка 10 мм рт. ст. [c.181]

    Введение галоидов в гетероциклическую систему или в ароматическое ядро стирильной группировки оказывает положительное влияние на их противоопухолевую активность. Замена диметиновой группировки (—СН = = СН—) на диазогруппу (—М = М—), азометиновую группировку (—N = 14—) или насыщенную цепочку (—СН2—СНг—) приводит к исчезновению противоопухолевого действия. Замена группировки (—СН = СН—) па более ненасыщенную цепочку (—СН = СН—СН = СН—), т. е. увеличение цепи конъюгации, не оклзяля положительного влияния. [c.54]

    В галоидангидридах кислот галоид чрезвычайно подвижен, т. е. легко вступает в реакции обмена. В этом отношении все галоиды ведут себя примерно одинаково. Причина подвижности галоида — значительный частичный положительный заряд (б+) на углероде, связанном тремя своими валентностями с сильноэлектроотрицательными атомами (кислород и хлор), и в результате — доступность углеродного атома для нуклеофильной атаки. [c.177]


Смотреть страницы где упоминается термин Галоиды положительные: [c.225]    [c.448]    [c.480]    [c.482]    [c.37]    [c.73]    [c.194]    [c.232]    [c.169]    [c.336]    [c.523]    [c.174]    [c.190]    [c.286]    [c.17]    [c.72]    [c.523]    [c.14]   
Электронные представления в органической химии (1950) -- [ c.31 , c.32 , c.34 , c.40 , c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Галоиды

галоидо



© 2025 chem21.info Реклама на сайте