Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузный двойной слой

    Третьим возможным механизмом образования двойного электрического слоя служит поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Такой дипольный слой, ориентированный на поверхности, представляет собой фактически двойной электрический слой, не являющийся диффузным. Притягивая подвижные заряженные частицы, он может индуцировать вторичные, уже диффузные двойные слои, распространяющиеся вглубь по обе стороны от поверхности раздела фаз. [c.185]


    ТЕОРИЯ ДИФФУЗНОГО ДВОЙНОГО слоя [c.263]

    Разработка теории процессов коагуляции встретилась с большими трудностями. Попытки построить теорию на основе представлений, по которым коагулирующее действие электролита обусловливается электростатическим сжатием диффузного двойного слоя и соответствующим изменением -потенциала до некоторой предельной величины, не привели пока к успешному результату. Та же участь постигла и попытки построения чисто адсорбционной теории коагуляции. [c.522]

    Скорость ее в катодном направлении, в условиях, когда можно пренебречь диффузностью двойного слоя в электролите, может быть записана как [c.378]

    Третий механизм образования двойного электрического слоя — поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Большинство молекул содержит такие диполи, и они — главная причина ориентации молекул на поверхностях. Слой ориентированных диполей, представляющих собой двойной электрический слой, не является диффузным. Однако притяжением подвижных заряженных частиц такой слой может индуцировать вторичные диффузные двойные слои, распространяющиеся в глубь обеих фаз. [c.166]

    С увеличением pH сточной воды (см. рис. 5.6) происходит уменьшение оптической плотности, ХПК и возрастает концентрация ионов А1 . Увеличение концентрации ионов в дисперсионной среде в диапазоне значений pH = 6 4- 9 обусловлено электрохимическими реакциями, которые с возрастанием pH дисперсии в указанном диапазоне протекают интенсивнее. Ионы Са уменьшают энергетический барьер взаимодействия между дисперсными частицами за счет их разряжения и уменьшения -потен-циала или сжимают диффузный двойной слой, что делает возможным электрообработку, вызывающую коагуляцию дисперсной фазы при напряженности поля 5 В/см в течение 4 мин. Уменьшение оптической плотности и ХПК обработанной воды связано с тем, что, возможно, при возрастании pH уменьшается энергетический барьер взаимодействия частиц. [c.104]

    Физическая теория коагуляции электролитами Б. В. Депягина бази-руется на общих принципах статистической физики, теории растворов и теории действия молекулярных сил. Устойчивость или неустойчивость дисперсной системы в этой теории выводится из рассмотрения молекулярных сил и сил электрического отталкивания, действующих между частичками. При рассмотрении коагуляции коллоидных систем следует различать нейтрализационную коагуляцию, при которой потеря устойчивости происходит в результате разряжения коллоидных частичек и уменьшения их -потенциала. и концентрационную коагуляцию, при которой потеря устойчивости связана не с палением -потенциала, а вызвана сжатием диффузного двойного слоя. Большое количество электролита будет достаточно для понижения энергетического барьера, что обеспечит начало коагуляции. В этом случае начальная скорость коагуляции тем больше, чем больше было добавлено в золь электролита, а следовательно, чем больше был снижен энергетический барьер. Это область астабилизованного золя. Коагуляция, при которой не все столкновения частичек кончаются их сцеплением, условно названа медленной коагуляцией. Коагуляция, при которой все стол, но-вения кончаются слипанием, называется быстрой коагуляцией. [c.90]


    Диффузный двойной слой образован ионами, которые расположены в растворе на некотором расстоянии от поверхности электрода, которое больше радиуса иона. Такое расположение ионов, так же как и в ионной атмосфере, получается под влиянием двух противоположных факторов электростатических сил, которые стремятся притянуть ионы плотно к поверхности электрода, и теплового движения, которое стремится расположить ионы хаотически в растворе. В результате ионы, входящие в состав [c.301]

    В эмульсиях В/М толщина диффузного двойного слоя у) составляет несколько микрометров, так что здесь при увеличении расстояния между каплями энергия отталкивания убывает намного медленнее, чем в эмульсиях М/В. Вследствие этого при вычислении 7от для эмульсий В/М необходимо скорее вводить поправку, учитывающую эффект взаимодействия между многими частицами при их сближении (Альберс и Овербек, 1960), чем принимать во внимание отталкивание между двумя изолированными каплями, как это обычно делается для эмульсий М/В  [c.249]

    Производные йц>1йх относятся к началу.диффузных слоев (индекс 0), где л = О и ф = Фо недеформированному слою отвечает индекс со, деформированному — индекс к. Производные, соответствующие верхним пределам интегрирования в (6.15а) [(йци йх) и ( ф/й(х) 2, (г]> равны нулю для первой из них объяснение было дано при изложении теории диффузного двойного слоя (гл. 5), а обращение в нуль второй следует из очевидного минимума, который должна иметь функция ф (л ) при л = /г/2 (рис. 44, б). [c.174]

    Для физической интерпретации зависимости емкости от концентрации и температуры диффузный двойной слой можно уподобить конденсатору с некоторой эффективной толщиной к  [c.108]

    В дальнейшем было выяснено, что происходит электровосстановление самих анионов, а скорость процесса при I < а определяется стадией разряда. Что же касается ускорения разряда в присутствии катионов фона, то в первую очередь оно связано со сдвигом 11)1-потен-циала в положительную сторону в ряду К"" — Са — Ьа "" из-за уменьшения диффузности двойного слоя. Как следует из уравнения [c.280]

    Попытки объяснить понижение прочности расклинивающим давлением тонких слоев жидкости, например, для диффузных двойных слоев ионов в разбавленных электролитах, оказались неудачными такие расклинивающие давления и соответствующие им понижения поверхностной энергии вызываются первым молекулярным (мономолекулярным) адсорбционным слоем. Именно такие предельно тонкие адсорбционные слои вызывают наибольшие эффекты понижения прочности. Расклинивающее же давление может проявляться только при предельно слабых связях между поверхностями (частичками) твердого тела или соответствующей дисперсной (коагуляционной) структуры (например, в явлениях набухания или самопроизвольного диспергирования—пептизации — агрегатов коллоидных частичек в разбавленных растворах электролитов). [c.218]

    Положительный знак указывает на недостаток анионов в диффузном двойном слое. Так как специфически адсорбированный заряд связав с общим анионным избытком заряда выражением [c.44]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]

    Экспериментальные данные показывают, что зависит от pH раствора, присутствия посторонних ионов, диффузности двойного слоя, наличия в электролите поверхностно активных веществ. Влияние всех этих факторов сказывается на константе а, изменяя ее величину. Однако рекомбинационная теория не объясняет этих явлений. [c.308]

    Уравнение (Х1,57) проверялось С. Д. Левиной и В. А. Зарин-ским, а также В. С. Багоцким, который определял изменение перенапряжения при добавлении к раствору НС1 соли КС1 и сравнивал полученные значения с рассчитанными по уравнению (XI,57) или (Х1,54). Значения ipi при этом вычислялись по уравнению диффузного двойного слоя  [c.320]

    Предложенная Штерном структура двойного электрического слоя является промежуточной между двумя крайними случаями, описанными Гельмгольцем и Гуи. Согласно теории Штерна, часть противоионов находится на молекулярном расстоянии от поверхности ядра (слой Гельмгольца), а другая часть образует диффузный двойной слой по Гуи. [c.320]


    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. [c.17]

    Наибольшей диффузностью двойной слой обладает вблизи потенциала нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в нем, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. [c.237]

    Если причина водородного перенапряжения заключается в замедленной стадии молизации, то металлы, поглощающие водород (Р1, Рс1, Ре, N1, Со, Та и др.), должны обладать наименьшим перенапряжением. Это справедливо, если сопоставить металлы железной группы, легко поглощающие водород, со ртутью или цинком, на которых перенапряжение значительно выше. Однако это не оправдывается для тантала. Тантал поглощает водород в значительно больших количествах, чем металлы железной группы, в то же время перенапряжение для разряда ионов водорода на нем очень велико. Экспериментальные данные показывают, что Т)Н2 зависит от pH раствора, присутствия посторонних ионов, диффузности двойного слоя, содержания в электролите поверхностно активных веществ. Все эти факторы изменяют величину константы а. Однако рекомбинационная теория не объясняет этих явлений. [c.349]

    Ионно-электростатическое взаимодействие в черных углеводородных пленках специально не рассматривалось. Это, очевидно, вызвано как тем, что влияние электростатического взаимодействия на устойчивость обычно невелико, так и тем, что теория ДЛФО применима при не очень сильном перекрытии диффузных слоев. В черных углеводородных пленках ситуация как раз противоположна этому. Толщина их так мала, что диффузные слои перекрываются полностью. Другими словами, в черной пленке не успевает возникнуть обкладка диффузного двойного слоя. Если электролит А В растворим как в водной, так и в органической фазе, то условием равновесия будет равенство электрохимических потенциалов в разных фазах (р )  [c.133]

    Электрофоретическое разделение возможно лишь тогда, когда ионы различаются по их подвижности. Эффективный заряд представляет собой заряд иона за вычетом части заряда окружающего противоположно заряженного двойного электрического слоя. При перемещении ион притягивает эту часть двойного электрического слоя и передвигается из-за этого более медленно. Это явление называется электрофоретическим эффектом, который наиболее сильно проявляется в тонких диффузных двойных слоях вокруг ионов. Этот характеристический двойной электрический слой может быть рассчитан по теории Дебая-Хюккеля. Он обратно пропорционален корню квадратному из концентрации электролита. Отсюда следует, что эффективный заряд иона и, соответственно, скорость перемещения при увеличении ионной силы уменьшаются. [c.9]

    Основу всех ионных теорий представляет уравнение Нернста для расчета работы., совершаемой ионом при его перемещении в растворе из бесконечности до точки на твердой поверхности. Затем появилась теория диффузного двойного слоя Гуи—Чэн-мана, основанная на уравнениях Пуассона—Больцмана. Согласно этой теории, движение катионов вблизи поверхности поддерживается тепловой энергией, причем катионы притягиваются к поверхности соответствующими отрицательными зарядами. Этот же закон применим и для описания того, как молекулы окружающей землю атмосферы удерживаются вблизи поверхности под действием сил земного притяжения. Затем было понято, что катионы больших размеров не могли приближаться к отрицательным зарядам на поверхности так же, как катионы меньших размеров. Штерн ввел поправку,.учитывающую размер иона, и предложил рассматривать некоторый слой, который затем стал называться слоем Штерна . В этом слое вблизи отрицательно заряженной поверхности накапливается определенное количество, катионов, которые в основном оказываются заторможенными. Таким образом, формируется плотный двойной электрический слой . [c.918]

    Элементарная теория диффузного двойного слоя позволяет рассчитать только средние значения ф потенциалов. Для нахождения скорости реакции в выражение для тока [уравнение (79)] следовало бы подставлять не эти средние значения 1-потенциалов, а их локальные значения в точках, соответствующих максимальному приближению аниона к катиону в двойном слое эти значения, однако, до сих пор определить не удалось. Их величины могут заметно отличаться от средних значений [см. (63)]. Зависимость скорости электровосстановления от радиуса катиона, отрицательный температурный коэффициент тока в минимуме и торможение реакции восстановления некоторых анионов при добавлении в раствор двухвалентных невосстанавливающихся анионов [101] показывают, что электровосстановление анионов происходит в непосредственной близости от одного из катионов в двойном слое. Иначе говоря, восстанавливающиеся анионы связаны с поверхностью электрода катионными мостиками [112]. В отличие от концепции ионных пар Гейровского [123, 124], который считал их находящимися в растворе, здесь предполагается образование ионных пар в двойном электрическом слое. Следовательно, определяющей стадией при электровосстановлении анионов может быть перенос электронов на анионы, связанные с поверхностью катионными мостиками, а в некоторых случаях и самообразование ионных пар внутри двойного электрического слоя, облегчающее проникновение анионов через противодействующее электрическое поле двойного слоя. [c.223]

    В сочетании с (VII.68) эта формула определяет параметрически зависимость Д6" от расстояния между пластинами. Впервые такая зависимость при произвольных значениях потенциала Фо была найдена Фервеем и Овербеком [11], которые применили с этой целью один из вариантов метода заряжения. Путем соответствующих преобразований можно показать, что формула (VII.76) и ее аналог, полученный Фервеем и Овербеком, полностью совпадают. Однако ввиду громоздкости найденного выражения Фервей и Овербек ограничились графическим исследованием задачи об устойчивости, тогда как выражение (VII.76) позволяет решить эту задачу аналитически (см. ниже 8). Кроме того, как было показано Муллером [13], формула (VII.76) значительно упрощается в случае высоких и даже средних потенциалов, рассмотрение которых представляет особый интерес. Известно, что пороговая концентрация электролита слабо зависит от валентности побочного иона и, напротив, сильно зависит от валентности противоиона. Этот факт можно легко объяснить, предположив, что потенциал диффузного двойного слоя частиц достаточно высок. [c.87]

    Это уравнение основывается на модели, по которой подвижная часть двойного слоя мон ет иметь любое распределение (как слой Гуи), по предполагается движение в среде со средним отношением вязкости Г] к диэлектрической постоянной е. Большинство авторов принимают значения этих параметров, равными параметрам воды. Однако другие считают, что вода в области диффузного двойного слоя имеет аномальные свойства вследствие высокой локальной силы поля. Ликлема и Овербек (1961) заключили, что ё, вероятно, не изменяется, а Г) может увеличиваться, но надежные значения вязкоэлектрической константы для воды отсутствуют. [c.101]

    Так как трудно получить монодисперсные кап. необходимого размера, имеется очень мало исследований электровязкостных эффектов в эмульсиях. Ван дер Ваарден (1954) определил вязкости ряда эмульсий М/В, стабилизированных сульфонатами натрия, в которых величина не превышала 0,205 мкм (табл. 1 МЗ). Максимальная концентрация примененного эмульгатора была необычно большой, так как составляла — 12% общего веса эмульсии. При более высоких концентрациях эмульгатора 11отн существенно отклонялась от теоретических значений, вычисленных по уравнению (IV.206). Увеличение было также намного большим, чем предсказывалось уравнениями (IV.249) и (IV.250). Поэтому сделано заключение, что расхождение не могло быть результатом искажения диффузного двойного слоя вокруг капель. Полагали, что сильно ионизированный эмульгатор, адсорбированный на поверхностп капель, создает электрическое поле высокого напряжения 10 —10 в см и слой молекул воды прочно связан с ним. Толщина слоя воды, как показано кажущимся увеличением Дг была 0,0014—0,0037 мкм, досиггая почти устойчивого значения при более высоких концентрациях эмульгатора. [c.296]

    Удаление электролита увеличивало толщину диффузного двойного слоя, в результате чего в стационарном состоянии внутри агрегатов удерживалось значительно больше непрерывной фазы. Это увеличивало эффективную объемную концентрацию дисперсной фазы, так как при низкпх скоростях сдвига агрегаты перемещались как отдельные единицы. Добавка электролита к диализованному латексу изменяла зависимость, и вязкость уменьшалась при увеличении концентрации электролита до тех пор, пока не достигала минимального значения. Это сопровождалось изменением режима от неньютоновского до ньютоновского. Лаурилсульфат натрия был гораздо менее эффективным, чем хлорид натрия. Например, i,И iQ моль лаурилсульфата натрия на 1 г латекса снижали вязкость при 1 сек от 505 до 425 пз, а та же концентрация хлорида натрия снизила вязкость до 0,367 пз. [c.298]

    Предположим, что серебряный электрод находится в равновесии с раствором AgNOa, к которому для устранения миграции добавлен избыток КНОз. При равновесии концентрация ионов А + вплоть до границы диффузного двойного слоя равна объемной концентрации с. Наложим на электрод переменную разность потенциалов [c.196]

    При взаимодействии коллоидов с электролитами обычно на поверхности частиц адсорбируется преимущественно один из ионов, сообщающий поверхности свой знак заряда. Для простоты положим, что адсорбируются только ионы одного знака (например, частицы йодистого серебра в 0,01 н. AgNOs адсорбируют только Ag + -ионы) и что противоположные или компенсирующие ионы полностью остаются в растворе. Под действием сил электростатического притяжения компенсирующие ионы стремятся расположиться возможно ближе к ионам, адсорбированным на поверхности. В предельном случае образуется два слоя ионов, из которых один расположен на поверхности, а другой — в растворе, на молекулярном расстоянии от первого слоя (рис. 42 а). Такая система ионов, в целом нейтральная, называется двойным электрическим слоем, по Гельмгольцу. Под действием теплового движения упорядоченное расположение компенсирующих ионов в растворе нарушается, вследствие чего в другом предельном случае двойной электрический слой приобретает структуру диффузного двойного слоя, по Гуи (рис. 42 в) толщина этого слоя может составлять, например в 0,001 н. КО — 10 ма, а в 0,1 н. КС1 — 1 м[1. Фактически следует представлять, что часть ионов находится на молекулярном расстоянии от [c.102]

    Имея в виду, в частности, проблему устойчивости дисперсных систем, отметим, что уравнения, описывающие распределение ионов в диффузном двойном слое и в его плотной части (т. е. изотермы адсорбции и диссоциации), представляют собой всего лишь отправные пункты для расчета силы и энергии взам одействия объектов коллоидной степени дисперсности (см. главу VI). Эти расчеты, в свою очередь, также являются лишь одним, хотя и важнейшим, компонентом анализа причин устойчивости и скорости процессов агрегирования и дезагрегирования в коллоидных системах (см. главу IX). Поэтому неудивительно, что относительно менее строгим, исходным уравнениям, позволяющим получить конечные результаты (зависящие, как правило, от многих параметров) не только в численном, но и в аналитическом виде, часто отдается предпочтение перед более точными, но не представимыми в удобной для анализа форме исходными уравнениями, описывающими структуру ДЭС. Получающиеся при этом приближенные результаты, безусловно, имеют определенные преимущества перед численными, так как позволяют обратить внимание именно на те параметры, которые играют решающую роль для конкретной задачи и могут служить удобным ориентиром при проведении более детальных и точных численных расчетов. [c.24]

    Остановимся вкратце лишь на тех работах, которые ближе к тематике книги. Ряд вопросов теории устойчивости лиофобных коллоидов был рассмотрен Барбоем влияние на пороги коагуляции величины потенциала частиц, заряда побочных ионов и состава электролита [27]. Все эти расчеты основаны на анализе баланса сил молекулярного притяжения и ионно-электростатического отталкивания в системах, состоящих из плоских частиц с фиксированным потенциалом диффузного двойного слоя. Броуновское движение частиц при этом полностью игнорировалось. Напротив, кинетические аспекты устойчивости подробно рассматривались Глазманом и Клигман [28]. Глазман и Барбой с сотр. [29]йоказали, что такие явления, как аддитивность, антагонизм, синергизм, в действии смесей ионов могут быть в принципе объяснены с помощью модели взаимодействующих плоских частиц при определенных предположениях относительно ад- [c.269]

    Значения ij3i для расчета токов были вычислены по теории диффузного двойного слоя с учетом величины радиуса иона [121 ]. Аналогично вычислялись значения ф -потенциала в случае добавок хлорида калия, которые подставлялись в уравнение (79) или (79а). Согласие между теорией и опытом и в этом случае было очень хорошим. Изложенная здесь в самой простейшей форме теория предполагает, что восстанавливающийся анион не адсорбируется специфически на ртутном капельном электроде и расчет средних значений ф1-потенциалов ведется с помощью элементарной теории диффузного двойного слоя. Однако эта теория количественно описывает только поведение персульфата. [c.222]

    Подход к поспедней проблеме, основанный на анализе и учете взаимодействия пар коллоидных частиц в функции расстояния между ними, был развит одновременно и независимо Дерягиным [8-10], де Буром [И] и Гамакером [12]. И тот и другие использовали выражение для молекулярного взаимодействия, получающееся путем интегрирования парных взаимодействий, описьшаемых формулой Лондона, по объемам обеих частиц. При этом постулировалась аддитивность парных взаимодействий. Силы отталкивания при сближении частиц, окруженных диффузными двойными слоями, учитывались Гамакером с помощью эмпирической формулы, не получившей в дальнейшем подтверждения. [c.7]


Смотреть страницы где упоминается термин Диффузный двойной слой: [c.315]    [c.290]    [c.70]    [c.3]    [c.206]    [c.229]    [c.290]    [c.103]    [c.142]    [c.152]   
Физическая химия поверхностей (1979) -- [ c.165 , c.168 , c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузный слой



© 2025 chem21.info Реклама на сайте