Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса взаимодействие

    Какова природа сил Ван-дер-Ваальса Какой вид взаимодействия между частицами приводит к переходу в конденсированное состояние N6, N2, Ш, СЬ, ВРз, Н2О  [c.72]

    Природа сил межмолекулярного взаимодействия в растворах углеводородов. Согласно современным представлениям о межмо — лекулярном взаимодействии, в растворах диэлектриков (в частности, в растворах углеводородов) действуют силы Ван-дер-Ваальса (трех типов) и водородные связи. [c.214]


    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]


    В зависимости от природы сил взаимодействия различают физическую (электростатическую) адсорбдию, вызванную чисто куло-новским взаимодействием, специфическую, когда, например, ионы адсорбируются на одноименно заряженной иоверхности, и обусловленную, в основном, силами Ван-дер-Ваальса, а также хемосорб-цию, связанную с образованием химических соединений между адсорбентом (в данном случае металлом) и адсорбатом (в данном случае частицами, находящимися в ра творе). [c.235]

    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]

    Межмолекулярное взаимодействие. При изучении свойств различных веществ наряду с внутримолекулярными взаимодействиями, обусловленными действием валентных (химических) сил и характеризующимися насыщенностью, большими энергетическими- эффектами и специфичностью, следует учитывать и взаимодействие между молекулами вещества. При расширении газов, конденсации, адсорбции, растворении и во многих других процессах проявляется действие именно этих сил. Межмолекулярные силы часто называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие). [c.135]

    Подчеркивая сложность механизма гидрогенолиза на алюмоплатиновом катализаторе и большую, подчас решающую, роль условий проведения опытов, Го полагает, что лимитирующей стадией реакции является стадия десорбции промежуточного комплекса с поверхности катализатора с одновременным разрывом С—С-связи. По его мнению, образование такого комплекса происходит в момент взаимодействия молекулы углеводорода из фазы Ван-дер-Ваальса с хемосорбированной на катализаторе молекулой водорода. Как справедливо замечает и сам автор, предложенный механизм по существу не отличается от механизма диссоциативной адсорбции Тейлора [164]. По нашему мнению, к нему относятся все замечания, приведенные выше при обсуждении механизма, предложенного в работе [152]. [c.132]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    В ассоциированном состоянии молекулы подвержены суммарному воздействию химических и физических взаимодействий. Природа физических межмолекулярных взаимодействий (ММВ) - это силы Ван-дер-Ваальса, образование комплексов и радикально-молекулярное взаимодействие. Основные из них силы Ван-дер-Ваальса - взаимодействие между двумя полярными молекулами, т. е. ориентационные силы (энергия такого взаимодействия снижается с ростом температуры), и взаимодействие между дипольной молекулой и другой, в которой диполь наводится первой, т. е. индукционные силы (это взаимодействие не зависит от температуры). [c.166]

    В веществах с молекулярной структурой проявляется межмолекулярное взаимодействие. Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее сил, приводящих к образованию ковалентной связи, ио проявляются они на больших расстояниях, В их основе лежит-электростатическое взаимодействие молекулярных диполей. [c.71]

    По Ван-дер-Ваальсу (1873 г.), в реальных газах, в отличие от идеальных, возникают силы межмолекулярного взаимодействия и молекулы обладают определенным объемом (т. е. не рассматриваются только как материальные точки). Уравнение Ван-дер-Ваальса для 1 моль реального газа  [c.132]

    Расстояние между атомами различных молекул лимитируется силами отталкивания (контакты Ван-дер-Ваальса) это обусловливает в соединениях включения большую энергию взаимодействия, чем в жидкости, благодаря тому, что таких контактов много. [c.77]

    Таким образом, межмолекулярное взаимодействие обусловлено силами Ван-дер-Ваальса и водородной связью, причем в водородной связи существенную роль играет и донорно-акцепторное взаимодействие. [c.45]

    На основании общих модельных предста влений Б. В. Дерягиным совместно с Л. Д. Ландау была развита количественная теория коагуляции и устойчивости дисперсных систем. Основу этой физической теории составляет учет молекулярных сил Ван дер Ваальса взаимодействия между коллоидными частичками и электростатического отталкивания двойных электрических слоев этих частичек при их перекрытии. Задача, таким образом, сводится к расчету баланса сил сцепления и сил отталкивания между коллоидными частичками. [c.80]


    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    В сотрудничестве с Герцфельдом Гайтлер выполнил теоретическую работу, посвященную изучению давления паров и теплот смешения в бинарных жидких системах по методу Ван-дер-Ваальса. Его диссертация была посвящена теории концентрированных растворов. В ней он предложил рассматривать жидкие бинарные системы неэлектролит— растворитель как пространственную решетку кубической симметрии. На осрове своей модели Гайтлер рассчитал методами статистической физики наиболее вероятное расположение молекул растворителя около молекулы растворенного вещества. Допуская, что теплота смешения ие зависит от температуры и что все парциальные моляльные теплоты примерно одинаковы, он получил уравнение состояния системы, по которому можно было определить некоторые ее свойства. Сопоставление с экспериментом показало, что теория дает вполне удовлетворительные результаты. По-видимому, исследование растворов неэлектролитов методами статистической термодинамики привело Гайтлера (не без влияния Герцфельда) к вопросу о природе химических взаимодействий в них. [c.154]

    Рассмотрим агрегацию крупных частиц с учетом фазовых переходов (роста кристаллов). Пусть существуют силы отталкивания в системе и расстояние к, при сближении, на котором начинают существенно действовать силы отталкивания, пусть система находится в агрегативно устойчивом состоянии. В случае кристаллизации частицы растут и под действием сил роста преодолевают этот порог /г., расстояние между частицами уменьшается на более малом расстоянии, чем /г., действуют в большой степени силы Ван-дер-Ваальса, чем силы отталкивания, и, следовательно, возможна агрегация частиц. Запишем уравнение изменения расстояния между частицами вследствие роста частиц и их взаимного сближения за счет сил взаимодействия  [c.97]

    Я опишу историю этой работы так, как я это помню. Ни одна другая оригинальная идея, ни моя, ни Лондона, не была такой амбициозной, как эта, Поначалу мы помышляли о малом, — требовалось рассмотреть вопрос о силах Ван-дер-Ваальса. Мы полагали, что ответ можно получить, если рассчитать взаимодействие зарядов двух атомов водорода и их зарядовых плотностей, вовсе не думая об обменном взаимодействии... В результате мы пришли к тому, что впоследствии было названо кулоновским интегралом , значение которого было, однако, слишком велико для сил Ван-дер-Ваальса, хотя и отвечало значительному межатомному притяжению. Некоторое время мы действительно испытывали затруднения, которые были связаны с тем, что неясным оставался смысл полученного результата. Мы не знали, что с ним делать. Вскоре появилась статья Гейзенберга об обмене, но почему-то обмен в ней смешивался с резонансом,— с резонансом двух электронов одного и того же атома, когда один из них возбужден, а другой находится в основном состоянии, — хотя сам Гейзенберг представлял дело так, будто оба понятия (обмена и резонанса — И. Д.) следует различать, и мы поначалу не предполагали, что обмен вообще играет какую-либо роль. Но вместе с тем, мы не могли двигаться дальше, и в течение нескольких недель создавшаяся ситуация была главным предметом наших раздумий и частых дискуссий. [c.152]

    Впервые сечение захвата для сильно различающихся по размерам частиц с учетом гидродинамического взаимодействия между ними было определено в работе [106]. Задача решалась в следующей постановке. Пусть и Я 2 — радиусы сближающихся частиц и пусть Относительная скорость движения частиц, пока они находятся на большом расстоянии друг от друга, равна V. При сближении частиц между ними начинают действовать гидродинамические силы, возникающие вследствие выдавливания разделяющей их пленки жидкости, и силы Ван-дер-Ваальса. При сближении капель на расстояние между их поверхностями б сумму этих сил можно записать в виде [c.86]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    На отрезке — к молекулы А и В не взаимодействуют между собой, поэтому Е, Е% и Ег остаются постоянными. В момент и молекулы подходят на расстояния, на которых начинают проявляться межмолеку-лярные силы притяжения Ван-дер-Ваальса (3-5- 10 1 м). На этих расстояниях интегралы перекрывания МО практически равны нулю. Энергетическое возмущение электронов невелико. При дальнейшем сближении молекул происходит перекрывание МО. Если на МО находятся по два электрона, между ними возникают силы отталкивания, обусловленные принципом Паули. Дальнейшее сближение молекул приводит к изменению расположения ядер и электронной плотности в молекулах. При сближении молекул А и В, когда силы притяжения между молекулами преобладают над силами отталкивания, внутренняя энергия понижается, энергия поступательного движения молекул возрастает. Когда начинают преобладать силы отталкивания, а молекулы А и В в силу инерции продолжают сближаться, кинетическая энергия 2 поступательного движения молекул по линии, соединяющей их центры, уменьшается, внутренняя энергия Ез возрастает. На рис. 186 кривая 1 отражает изменение Е-1 и Еъ при чисто упругом столкновении кривая 2 — столкновение, при котором доля кинетической энергии поступательного движения, переходящая во внутреннюю энергию, невелика, и молекулы разлетаются с незначительно повышенной внутренней энергией кривая 5 характеризует изменение внутренней энергии при столкновениях, когда происходит значительное увеличение внутренней энергии Ел. Вероятность таких столкновений невелика. При столкновениях, заканчивающихся значительным увеличением внутренней энергии, расположение ядер атомов и распределение электронной плотности в молекулах А и В существенно меняется. Когда внутренняя энергия реагирующих молекул достигает максимума (интервал Д/), рас-. [c.560]

    Ван-дер-Ваальс пытался применить к жидкостям свое уравнение (III, 28). Однако, хотя это уравнение удовлетворительно выражает некоторые частные зависимости для жидкостей, оно неприменимо к жидкостям. Многочисленные попытки вывода других форм уравнения состояния жидкостей, основанные на тех же представлениях об аналогии между жидким и газовым состояниями, не дали положительных результатов, так как они не отражали сложности взаимодействия между молекулами в жидкостях. [c.161]

    Особенностью дисперсионного взаимодействия является его всеобщность, так как во всех молекулах есть движущиеся электроны. Дисперсионное взаимодействие для неполярных молекул —главный и практически единственный источник сил Ван-дер-Ваальса. Дисперсионное взаимодействие вносит известный вклад также в энергию ионной связи в молекулах и кристаллах. [c.134]

    Кроме сил Ван-дер-Ваальса в образовании растворов (углеводородов) большую роль играют водородные связи, которые образуются при взаимодействии электроотрицательного атома кислорода, фтора, азота и в слабой степени атома хлора с атомом водорода. Наличие водородной связи приводит к ассоциации молекул раст ворителя и уменьшению его растворяющей способности. Водородные связи образуются в большей степени при понижении температуры. При образовании водородных связей взаимодействие диполей в ряде случаев имеет второстепенное значение. [c.70]

    Теоретические основы. Очистка основана на способности полярных растворителей преимущественно растворять полициклические ароматические углеводороды и смолистые соединения, наличие которых в масле нежелательно. Основную роль в процессах селективной очистки играют силы Ван-дер-Ваальса (ориентационные, индукционные, дисперсионные), обеспечивающие взаимодействие полярных молекул растворителя с полярными или поляризуемыми молекулами сырья. [c.211]

    Растворимость объясняется взаимным притяжением молекул растворителя и растворяемого вещества [2, з]. (Свойства растворов определяются в основном их межмо-лекулярным взаимодействием, относите.гьными размерами, формой молекул компонентов и их стремлением к смешению, что сопровождается ростом энтропии. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. [c.164]

    В соединениях включения с карбамидом и тиокарбамидом во взаимодействие с каналообразующим веществом вступают все метильные группы углеродной цепи, о чем можно судить по увеличению соотношения комплексообразующего и реагирующего веществ (табл. 7). Истинная природа связи между углеводородами и молекулами карбамида и тиокарбамида в кристаллических комплексах пока не установлена. Многие исследователи склонны объяснить эту связь силами Вап-дер-Ваальса, т. е. считать кристаллические комплексы соединениями адсорбционной природы. Однако этому противоречат более высокие энергии связи углеводорода с карбамидом, приходящиеся на каждую группу СНг (1,6— [c.63]

    В растворе наряду с взаимодействием между молекулами одного из компонентов (однородные молекулы) существует взаимодействие между молекулами разных компонентов (разнородные молекулы). Эти взаимодействия при отсутствии химической реакции, так же как и в чистой жидкости, являются ван-дер-ваальсо-выми. Однако молекулы растворенного вещества (второго компонента), изменяя окружение молекулы растворителя (первого компонента), могут существенно изменять интенсивность взаимодействия между молекулами последнего и сами взаимодействовать между собой иначе, чем в чистом втором компоненте. Взаимодействие между разнородными молекулами может следовать иным закономерностям, нежели взаимодействие между однородными молекулами. Кроме того, разнородные молекулы могут взаимодействовать химически, образуя прочные или легкодиссоциирующие соединения (последние часто не могут быть выделены в чистом виде). [c.164]

    Из (11.4) следует, что рекомбинация по этому механизму предпочтительна, когда е велика и не зависит от числа эффективных степеней свободы, т. е. от сложности посторонних молекул. Величина е, зависящая от типа связи в RM, может быть обусловлена дисперсионным, ионным или ковалентным взаимодействием. Предполагая, что связь между частицами в комплексе является ван-дер-ваальсо-вой, выразим взаимодействие между ними потенциалом Ленарда — Джонса [193]. [c.118]

    Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее кокалентпых сил, ио пр011вляются па OojihiijHx расстояниях. В основе нх лежит электростатическое взаимодействие диполей, ио в различных веществах механизм воз никновения диполей различен. [c.157]

    Силу аутогезии можно представить в виде суммы нескольких составляющих сил Ван-дер-Ваальса и сил когезионного взаимодействия, имеющих молекулярную природу, а также сил электрических, мехапического сцоплеиия частиц н каннлляриьгх пя 1 лаж1 ых сыпучих материалов). [c.151]

    Ван-дер-ваальсовы молекулы. Поскольку энергия межмолекулярного взаимодействия во многих случаях не превышает 1000— 2000 Дж/моль, соединения за счет сил Ван-дер-Ваальса обычно не образуются. Этому препятствует тепловое движение 1/ . кТ). Однако при низких температурах, если /о кТ, удается обнаружить комплексы, такие, как гидраты благородных газов, частицы типа Аг2, Хез, АгНС1, АгЫг и др. Такие молекулы, образовавшиеся за счет ван-дер-ваальсового взаимодействия, называют ван-дер-вааль-совыми. Для них характерны большие равновесные расстояния и очень малые энергии связи. В принципе ван-дер-ваальсово соединение могут образовывать любые две молекулы, если Уд кТ. [c.136]


Смотреть страницы где упоминается термин Ван-дер-Ваальса взаимодействие: [c.565]    [c.42]    [c.278]    [c.242]    [c.501]    [c.256]    [c.258]    [c.12]    [c.115]    [c.68]    [c.164]    [c.30]   
Вода в полимерах (1984) -- [ c.36 , c.95 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса



© 2025 chem21.info Реклама на сайте