Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Турбулентность ранняя

    Кинетика массопереноса в турбулизованных двухфазных жидкостных системах изучена недостаточно. Это связано, прежде всего, с отсутствием надежной количественной теории турбулентности. Однако в современных экстракторах процесс экстракции обычно протекает именно в условиях развитой турбулентности. Ранее [1,2] нами было показано, что в некоторых случаях кинетику экстракционного процесса можно описать математически с удовлетворительной точностью. [c.125]


    Значительное влияние химического состава топлива на рабочие процессы двигателей обусловлено двумя основными причинами. Во-первых, как отмечалось ранее, при турбулентном горении в двигателях большая или меньшая доля топлива сгорает [c.145]

    Правильный учет влияния пористости был впервые сделан Козени для ламинарного потока. В противоположность некоторым более ранним гипотезам, согласно которым гранулированный слой эквивалентен системе параллельных капилляров, Козени математически рассматривал гранулированный слой как один широкий канал с гидравлическим диаметром, определяемым объемом и поверхностью пустого пространства в слое. Впоследствии Карман собрал многочисленные данные, сопоставил их с уравнением Козени и эмпирически распространил это уравнение на турбулентный режим. [c.257]

    Когда газ-трасер вводится в двухмерный псевдоожиженный слой через стенку аппарата, как показано на фото 1У-27, он движется вверх в виде тонкой струи без заметного расслаивания, по крайней мере до тех пор, пока не войдет в пузырь. Поскольку псевдоожиженный слой с барботажем пузырей выглядит как хаотическая и турбулентная система, в ранних работах не было обнаружено, что газ движется ламинарно обычно его считали полностью перемешанным. [c.158]

    При испарении жидкости с твердой поверхности в поток турбулентно движущегося газа [61 показатель степени т при числе Рейнольдса составляет порядка 0,8, что находится в согласии с опытными данными по теплоотдаче от газа к поверхности твердой стенки. Это также находится в соответствии с ранее рассмотренной аналогией между теплообменом, массообменом и трением в однофазных газовых потоках. [c.202]

    Аккерман [150] выполнил теоретическое исследование влияния поперечного потока вещества на интенсивность тепло- и массообмена при испарении жидкости в омывающий ее поток неконденсирующегося газа и при конденсации пара из парогазовой смеси в случае больших температурных и концентрационных напоров. В этом исследовании Аккерман исходил из той же упро щенной схемы ламинарного пограничного слоя, принятой ранее Кольборном, но, в отличие от Кольборна, учитывал изменение толщины пограничного слоя, вызываемого соответствующим изменением профиля скоростей в нем под влиянием поперечного потока вещества. При этом Аккерман предполагал, что поперечный поток вещества не оказывает влияния на изменение касательного напряжения на границе ламинарного пограничного слоя и турбулентного ядра течения. [c.156]

    В связи с тем, что /) характеризует турбулентный перенос в жидкой фазе, представляло интерес сравнить его с коэффициентами массопередачи для процессов десорбции, рассчитанными по уравнению (111.36), полученному ранее [342] на основании обработки многочисленных экспериментальных данных различных исследователей. Сравнение показало, что Кз пропорционален и может быть рассчитан по формуле Кз = с погрешностью в пределах 20%. Сравнение значения с коэффициентами массопередачи, рассчитанными по уравнению Соломахи [287] [c.161]


    Показатель степени т, однако, может изменяться от т=0 для полностью развитого ламинарного течения до т=0,9 для полностью развитого турбулентного течения. Коэффициент С также изменяется. В ранних работах данные в различных диапазонах значений чисел Рейнольдса (и Прандтля) описывались с помощью нескольких подобных уравнений. В настоящее время более предпочтительными, в особенности для численных приложений, считаются интерполяционные формулы, охватывающие сразу весь диапазон изменения чисел Рейнольдса и Прандтля. Как при внешних, так и при внутренних течениях реальная форма канала или обтекаемого тела может отличаться от формы канала или тела — прототипа (труба, сфера, цилиндр, пластина). В случае внутренних течений в качестве эквивалентного диаметра трубы используется гидравлический диаметр (5 — площадь поперечного сечения  [c.93]

    Все это подтверждает основные положения, высказанные ранее об особенностях диспергирования капель в турбулентном ядре потока и в пристенных слоях. [c.64]

    Применимость закона Стокса ограничивается также дисперсностью частиц. Большие частицы (>100 мкм) могут двигаться ускоренно, и тогда для определения скорости их движения нельзя пользоваться уравнениями (IV. 5), (IV. ) и (IV. 8). Кроме того, быстрое движение больших частиц может вызвать турбулентный режим потока частиц, при котором также перестает соблюдаться закон Стокса. Очень малые частицы — ультрамикрогетерогенные (<0,1 мкм) осаждаются настолько медленно, что следить за такой седиментацией, как было показано ранее, практически невоз-мол<но. В этих случаях нельзя ие учитывать влияния на осаждение дисперсной фазы механических, тепловых и других внешних воздействий на систему. [c.193]

    Сопоставление формул (121) с формулами (110) для коэффициента теплоотдачи конвекцией подтверждает сделанный ранее вывод о том, что переход слоистого движения в турбулентное совершается при значениях числа Рейнольдса 200—250, что объясняется -турбулизацией потока при внезапных расширениях и сужениях и резкими поворотами при движении через пористый слой. Сопротивление полидисперсного слоя зависит от соотношения отдельных фракций в слое. Так, на основе исследования сопротивления слоя из смеси двух компонентов возможно прийти к следующим выводам. [c.107]

    Физическая картина движения потоков в массообменных аппаратах, как правило, значительно сложнее вследствие перемешивания. В этих аппаратах перемешивание вдоль оси потока обусловлено турбулентной диффузией и разными другими причинами, указанными ранее (см. стр. 120). К числу их относится увлечение одной из фаз некоторой части другой фазы, движущейся противотоком к первой (например, захват брызг жидкости поднимающимися пузырьками газа или пара при барботаже), различие скоростей по поперечному сечению потока, приводящее к байпасированию части потока (в результате каналообразования), образование застойных зон и т. д. [c.419]

    Начальный участок закрученной струи значительно отличается от ранее исследованных турбулентных течений. Закрученные струи, вытекающие из кольцевого или цилиндрического устья, имеют в начальных сечениях очень сложный профиль, характеризующийся резкими градиентами скорости и давления. Поток на этом участке является трехмерным. Полный вектор в осесимметричной закрученной струе имеет в каждой точке три составляющие осевую направленную параллельно оси струи радиальную гОу, направленную вдоль радиуса струи, и тангенциальную направленную по касательной к окружности (с центром на оси струи), проходящей через эту точку. С ростом степени закрутки растут величины тангенциальной и радиальной скоростей. В центральной приосевой области закрученной струи из-за центробежного эффекта появляются зоны с разрежением или с меньшим статическим давлением. Благодаря этому, в приосевой области вблизи устья сопла возникают обратные токи рециркуляции, характерные для сильно закрученных струй, или (при малой крутке) образуются провалы в поперечном профиле осевых составляющих вектора скорости. [c.35]

    В механике непрерывных сред точка в жидкости — это очень маленький объем в макроскопическом масштабе, но достаточно большой объем в микроскопическом масштабе, позволяющий оценивать локальные изменения температуры, скорости, концентрации и т. д. Применяя такой же подход к определению концентрации для наших систем, мы столкнемся с трудностями, поскольку, как было показано ранее, практически всегда смешение в полимерных системах осуществляется путем конвекции при отсутствии молекулярной диффузии. Согласно этому механизму процесс смешения — не что иное как объемное перераспределение одного компонента в другом. Из этого следует, что в любой точке системы согласно данному выше определению должен находиться один компонент либо дисперсионная среда, либо дисперсная фаза. Другими словами, если отсутствует молекулярная или турбулентная диффузия , то смесь в пределах точки будет полностью разделена на компоненты. Если же под концентрацией в точке понимать представительную концентрацию внутри небольшого локального объема, значительно превышающего объем предельной частицы или размеры сегрегированной области, но гораздо меньшего, чем объем исследуемой пробы (см. ниже), то можно провести анализ эффективности смешения. Разумеется, определенную таким образом концентрацию нельзя использовать для оценки, например, скорости реакции, протекающей по молекулярному механизму. В этом случае величины локальных объемов, связанных с такой точкой , гораздо меньше, чем в нашей точке . [c.185]


    Как видно из соотношения (X, 4), ламинарное движение переходит в турбулентное при тем меньших скоростях, чем больше радиус трубки и плотность жидкости и чем меньше ее вязкость. Наличие в жидкости взвешенных частиц, особенно неправильной формы, способствует так называемой ранней турбулентности, т. е, тому, что ламинарное течение переходит в. турбулентное при значительно меньших значениях Re. [c.324]

    Прежде чем исследовать частные случаи, целесообразно рассмотреть наиболее простые общие аспекты проблемы, а затем анализировать турбулентное течение идеальной взвеси частиц в континуальном представлении, концепция которого была введена ранее в разд. 3.6. [c.169]

    В общем случае, как отмечает ранее и сам автор, частицы могут как подавлять, так и усиливать турбулентность несущей среды. — Прим. ред. [c.239]

    Непосредственные наблюдения за движением частиц, взвешенных в турбулентном потоке жидкости около стенки, с помощью ультрамикроскопа, ироде- ланные еще в 1932 г. Фейджем и Тайнендом [8], не обнаружили области, свободной от пульсационного движения. В это же время Мэрфри [9], производя расчеты теплоотдачи при больших значениях числа Прандтля, предпринял попытку учесть характеристики турбулентности в пристеночной области, где течение ранее предполагалось чисто ламинарным. Однако дальнейшее развитие теории массопередачн сильно тормозилось отсутствием экспериментальных данных [c.170]

    В своей более ранней работе [29] Коларж принимал, что внутренний масштаб турбулентности Хо вблизи стенки такой же, как в ядре потока, т. е. >-0 = /Ре /1, где — характерный размер системы (например, диаметр трубки), Ре — число Рейнольдса всего потока. В дальнейшем [30] он учел неизотропный характер турбулентности вблизи степкн и нашел следующую полуэмпирическую формулу для вычисления Хо [c.175]

    На рис III. 7, б в тех же координатах показаны результаты работ, опубликованных после 1960 г. Для потока жидкости в зернистом слое эти результаты хорощо соответствуют расчету по формуле (III. 36) при значениях коэффициентов, найденных ранее. Новые опытные данные для воздуха при Re = 1 — 40 лежат значительно ниже расчетной кривой и даже ниже предельного значения 1/Ре/ = 0,5. Это явление можно объяснить только уменьшением конвективной составляющей коэффициента диффузии в области вязкостного режима течения, при котором перемешивание потоков должно быть менее интенсивным, чем при турбулентном режиме. В переходном диапазоне Re 2 — 20. наблюдается наибольший разброс опытных данных. Сопоставление результатов опытов [42—47] с результатами, полученными по фор1 ле (III. 36), позволяет проследить за изменением Во в этой формуле с изменением Re в интервале Re = = 2—100 релаксационная составляющая изменяется в этом интервале незначительно. Получена приближенная формула [c.100]

    Режим обтекания частиц газовым потоком далеко не всегда бьшаег турбулентным. В связи с этим необходимость учета вязкости, ожижающего агента была еще ранее отмечена в примечаниях редактора на стр. 212 русского издания монографии М. Лева — Прим. ред. [c.629]

    При проектировании и эксплуатации системы подготовки нефти на промыслах необходимо выбирать тип деэмульгатора, место и способ ввода его в обрабатываемую среду с учетом особенностей технологического объекта и свойств эмульсии. В условиях незначительной турбулентности газоводонефтяного потока в промысловых коммуникациях и технологическом оборудовании рекомендуется химический реагент вводить не только на установках подготовки, но и непосредственно в скважинах или групповых установках. Данный ввод реагента обеспечивает равномерное распределение его и сокращение удельного расхода. Этот метод получил широкое распространение на промыслах Татарии. Получен значительный экономический эффект. При чрезмерно высоком уровне турбулентности в потоке происходит как бы дополнительное диспергирование, и ранний ввод химического реагента может привести к повышению устойчивости эмульсии. [c.40]

    За период, истекший после первого издания, основные идеи, высказанные ранее при анализе процессов массопередачи, получили дальнейшее развитие. Это прежде всего относится к рассмотрению явлений турбулентного переноса в двухфазных системах газ — жидкость, пар—жидкость, жидкость — жидкость. Явления турбулентного переноса и связанные с ними эффекты продольного и радиального перемешивания жидкостей и газов привлекли за последнее время внимание почти всех исследователей, занимаюш,ихся изучением процессов химической технологии. [c.3]

    Ранее использовал1И разные методы для измерения параметров турбулентных потоков, выходящих из импеллера. Обзор этих методов приведен в работе [2]. Следует отметить, что во всех прежних работах применяли один тип импеллера — турбину с ПЛОСКИМИ лопатками. [c.177]

    Турбулентность внешнего потока. Обычно более раннему переходу способствует турбулентность внешнего потока. В лабораторных экспериментах для турбулизации иограничного слоя и моделирования, таким образом, течений с большими числами Рейнольдса иногда искусственно увеличивают степень внешней турбулентности с помощью специальных решеток. Прн этом существенными являются размер ячеек решетки и ее расположение но отношению к модели, так как в некоторых случаях решетки могут, наоборот, уменьшать турбулентность и, следовательно, затягивать образование переходной области [103]. [c.116]

    Испарение. Контактный теплообмен двух сред часто используется в испарителях н осушителях [9]. Метод сгорания в погружном состоянии [10] (рис. 9) исиользуется в первую очередь в процессах концентрирования и кристаллизации накипи коррозионных и соляных растворов. Топливо и воздух подаются иод давлением в камеру сгорания и продукты сгорания, прежде чем покинуть камеру, проходят в виде пузырей сквозь рабочую жидкость. Так же как и ранее, вид конструкции зависит от конкретного приложения. В процессе работы у конца погруженной трубы (в области, где продукты сгорания входят в рабочую жидкость и образуют множество мелких пузырей) во.зникает интенсивная турбулентность. Интенсивность тепломассообмена высока из-за непрерывного быстрого обновления поверхности контакта и интенсивной турбулентности, воз-никаюш,ей в кольцевом зазоре между погруженной трубой и кожухом. [c.312]

    В ранних работах не учитывали также влияние акустической турбулентности в полях высокой интенсивности при низкой турбулентности, что было недавно отмечено Матулой [564] и Подощерни-ковым [651, 652]. Теоретическое значение гидродинамических сил было исследовано Пшеной-Севериным [664], который пришел к выводу, что наряду с ортокинетической коагуляцией они представляют собой существенный фактор в процессе агломерации частиц диаметром от 3 до 30 мкм в относительно низкочастотных акустических полях. Кроме того, Тимошенко изучал взаимодействие [c.525]

    Приведенные выше заключения относительно влияния проволочных дистанцио]пфующих вставок на характер течения между трубами вытекают из данных рис. 14.10 по коэффициенту трения для участков между диста щио-нирующими вставками. Данные представлены как функция числа Рейнольдса в диапазоне его изменения 300—6000. Отклонение экспериментальных точек от идеальных кривых, по-виднмо.му, указывает на наличие расслоения потока как в ламинарной, так и в турбулентной области, причем с уменьшением числа Рейнольдса область ламинарного течения, занимавшая ранее пространство в узких зазорах между трубами, постепенно расширяется, пока пе захватит все поперечное сечение. [c.279]

    Предположим далее, что поверхностное натяжение уменьшается на некотором участке до величины — о. Тогда, как показывает анализ, в этом месте происходит увеличение амплитуды колебаний с течением времени, а на остальных участках колебания поверхности продолжаются почти с той же частотой Кельвина. Этого следует ожидать, так как поверхность должна растягиваться там, где поверхностная энергия уменьшилась. При <сГо возникает нестабильность, несколько менее выраженная чем та, которую рассматривали ранее (см. стр. 30), ибо в данном случае увеличение амплитуды линейное, а не экспоненциальное, т. е. более медленное. Но когда и поверхностное натяжение становится отрицательным при а О, нестабильность растет экспоненциально во времени. В атодг случае образование капель было бы практически мгновенным. Так, этот расчет дает определенную, хотя и идеализированную модель для внутриповерхностной турбулентности .  [c.65]

    Таким образом, полученные результаты позволяют предположить, что максимальная интенсивность отложения парафинов на стенках трубопроводов будет наблюдаться в таких гидродинамических ситуациях, когда происходит переход системы из зоны гладкого трения в зону смешанного трения. При этом наблюдающиеся при максимуме значения критерия Рейнольдса будут определяться как диаметром трубы, так и шероховатостью стенки. Полученный результат согласуется с высказанным ранее утверждением /41/, что "вначале с ростом скорости потока, но при сохранении ламинарного режима течения интенсивность запарафинирования возрастает, а затем, достигнув своего максимума, начинает снижаться". Указывалось, что для стальных труб максимальная интенсивность совпадает с переходом в турбулентный режим. [c.90]

    Формулы (110) показывают, что если вычислять число Ре по диаметру кусков слоя, то переход от слоистого к турбулентному движению совершается при значении числа е 200, что для продуктов сгорания и кусков диаметром 30 мм отвечает абсолютному значению скорости об порядка 0,5 м/с. Таким-обра. ом, турбулентный режим течения теплоносителя в плотном слое отнюдь не является исключительным явлением, как это представлялось ранее. Необходимо по 1черкнуть, что экспериментальные данные, представленные уравнениями (110), относятся к слою, составленному из кусков одного и того же материала. Теплообмен в слое из разнородных материалов усложняется, поскольку м гериал с меньшей объемной теплоемкостью будет нагр. ваться быстрее. Возникающая при этом разность температур между кусками слоя приводит к теплообмену между ними. [c.101]

    Наиболее ранняя пленочная модель была предложена Льюисом и Уитменом, развившими взгляды Нернста на кинетику растворения твердых тел и некоторых других гетерогенных процессов. Согласно этой модели, в каждой фазе непосредственно к ее границе примыкают неподвижные или ламинарно движущиеся пленки, в которых перенос осуществляется только молекулярной диффузией. В пленках сосредоточено все сопротивление массоотдаче. Поэтому градиенты концентраций возникают лишь внутри пограничных пленок, в ядре фазы концентрации постоянны и равны средним концентрациям. Кроме того, в модели приняты допущения, указанные выше. Таким образом, этой модели соответствует схема, отличающаяся от приведенной на рис. Х-5 тем, что весь пограничный слой является областью, где отсутствует перемешивание турбулентными пульсациями и изменение концентрации в нем происходит линейно. [c.396]

    В наиболее ранней модели этой группы — модели проницания, или пенетра-ционной модели Хигби, — принимается, что массоотдача происходит во время контакта с поверхностью раздела быстро сменяющих друг друга элементов жидкости (газа или пара), переносимых из ядра к границе раздела турбулентными пульсациями. При этом свежие элементы смывают уже прореагировавшие и, следовательно, массоотдача осуществляется при систематическом обновлении поверхности раздела фаз. Контакт с этой поверхностью является столь кратковременным, что процесс массоотдачи не успевает стать установившимся и перенос в промежутках между обновлениями поверхности происходит путем нестационарной молекулярной диффузии, условно названной проницанием (пенетрацией). Допускается, что все вихри, достигающие поверхности раздела, имеют одну и ту же продолжительность существования, или возраст и, таким образом, время контакта 0 для всех элементов одинаково. [c.398]

    Отдельные примеры подобных процессов были известны и ранее. Это образование ячеечной структуры в неоднородно нафетом горизонтальном слое жидкости, возникновение турбулентности, вихрей и т.д. С конца пятидесятых годов нелинейные самоорганизующиеся процессы были открыты и в химии. Наиболее типичными примерами здесь стали осциллирующие каталитические реакции. [c.350]

    В гл. 6 и 7 обсуждался ряд примеров снижения потерь давления на трение и интенсивности теплообмена в трубах из-за присутствия частиц [11 — 13]. Результаты этих наблюдений можно объяснить только подавлением турбулентности частицами. Кроме того, эти результаты не ограничены лишь течением в трубах. Секели и Кар [14] отмечали, что при добавлении к газу частиц происходило снижение коэффициента теплообмена стенки нагретого циклона-сепаратора. Ранее [15] наблюдалось также снижение потерь давления в циклоне с увеличением концентрации частиц. Считается, что главной причиной таких результатов может быть подавление турбулентности в пограничном слое. [c.274]


Смотреть страницы где упоминается термин Турбулентность ранняя: [c.329]    [c.393]    [c.170]    [c.181]    [c.168]    [c.76]    [c.37]    [c.131]    [c.336]    [c.118]    [c.176]    [c.193]    [c.327]    [c.255]   
Курс коллоидной химии (1976) -- [ c.324 , c.327 ]




ПОИСК







© 2025 chem21.info Реклама на сайте