Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массоотдача сопротивление

    В разд. 8 содержатся сведения, необходимые при проведении экспериментальных исследований механизма явлений переноса (тепло- и массообмена). Описаны методы современных экспериментальных исследований, в том числе подробно рассмотрены методы исследования структуры потоков, значительное внимание уделено методам аналогий. Следует особо указать на практическую значимость экспериментальных исследований интегральных характеристик тепловых потоков, коэффициентов теплоотдачи, массоотдачи, сопротивления трения. В разделе дано систематизированное изложение методов определения этих величин, указаны источники погрешностей и способы их уменьшения. [c.10]


    Первый член в последней скобке представляет относительное сопротивление жидкой, а второй — газовой фазы. Поскольку коэффициенты массоотдачи /Ср и /с являются функциями многих переменных, то из (11.43) можно заключить, что на сопротивление массопередаче воздействует не только равновесный коэффициент т, но и другие условия процесса. [c.77]

    При п=1 модифицированные формулы аддитивности (4.10) и (4.12) совпадают с выражениями (4.6). Неравенства (4.9) и (4.11) выполняются, когда (и-1)/и 1, либо при условиях 1си-Сх 1/с1 1 или 1 2 —Сг /с2 1. Первое неравенство имеет место при и 1, т. е. в случае, когда коэффициент очень мало зависит от концентрации. Вторые неравенства, в свою очередь, выполняются в случае, когда массообмен протекает вблизи равновесия при малой движущей силе либо когда один из частных коэффициентов массоотдачи много больще другого. Формулы аддитивности фазовых сопротивлений в форме (4.6), (4.7) или (4.10), (4.12) применяются обычно, когда частные коэффициенты массопередачи не зависят от концентрации. Это имеет место при наличии тонких диффузионных пограничных слоев на границе раздела фаз. В работах [222] и [225] приведены результаты экспериментов в пропеллерной мешалке с плоской границей фаз. [c.172]

    Несмотря на ошибочность допущения о независимости толщины пленки от коэффициента диффузии, приводящего к линейной зависимости между коэффициентом массоотдачи и коэффициентом диффузии, пленочная теория сыграла положительную роль в развитии массообменных процессов. Идеи, связанные с особой ролью тонких пленок и наличием равновесия на границе раздела фаз, а также вывод о существовании формул аддитивности фазовых сопротивлений, широко использовались в дальнейших исследованиях. [c.173]

    Иногда существенно сопротивление только одной из пленок. Тогда в уравнении (VI, I) давление или концентрация будут известны (они в этом случае принимают значение, равное значению в объеме фазы), и массопередачу можно рассчитать на основании индивидуальных, или частных, коэффициентов пленки, т. е. коэффициентов массоотдачи. Если сопротивления двух пленок сопоставимы, коэффициенты массоотдачи можно объединить в один суммарный коэффициент. Так, например, в случае газовой и жидкостной пленок системы, в которой растворимость подчиняется закону Генри (р=НС), суммарный коэффициент, или коэффициент массопередачи, может быть определен из выражения  [c.180]

    В этом случае внутренний коэффициент массоотдачи Р = Рп- Уравнение (111.87) справедливо для любой изотермы адсорбции. Если же внутреннее сопротивление зависит как от диффузии в порах, так и от диффузии в сорбенте или на его внутренней поверхности, то строгая связь между коэффициентами массоотдачи и массопередачи существует лишь для линейной изотермы адсорбции. Она выражается уравнением [25]  [c.66]


    При сушке кристаллических материалов происходит удаление поверхностной влаги, т. е. процесс протекает в первом периоде сушки, когда скорость процесса определяется только внешним диффузионным сопротивлением. При параллельном движении материала и сушильного агента температура влажного материала равна температуре мокрого термометра. В этом случае коэффициент массопередачи численно равен коэффициенту массоотдачи = Ро-Для барабанной сушилки коэффициент, массоотдачи может быть вычислен по эмпирическому уравнению [5]  [c.165]

    В системе жидкость — жидкость лимитирующее сопротивление реакционной фазы — явление чрезвычайно редкое. Реакция, как правило, протекает в сплошной фазе. Если коэффициенты молекулярной диффузии переходящего компонента в фазах не сильно отличаются по величине, то коэффициент массоотдачи в сплошной фазе в 6—10 раз больше, чем коэффициент массоотдачи в дисперсной фазе [6]. Лимитирующее сопротивление сплошной фазы в этих условиях имеет место при величине коэффициента распределения <0,1. Если при этом учесть увеличение скорости массопередачи в сплошной фазе под воздействием химической реакции, то становится очевидным, что лимитирующее сопротивление реакционной фазы может иметь место лишь при очень малых значениях коэффициента распределения (г ) 10 ). Столь низкие значения коэффициентов распределения в системе жидкость — жидкость встречаются сравнительно редко. [c.227]

    Сопротивления сконцентрированы главным образом в фазе рафината, если коэффициент массоотдачи фазы экстракта или коэффициент распределения т очень велики, тогда дробь Мшк будет [c.67]

    Ячейки с двумя совместно вращающимися мешалками применяли Гордон и Шервуд [39]. Выводы они сделали, исходя из предположения, чтс коэффициенты массоотдачи зависят от коэффициента диффузии. Для исследованных систем установлено, что сопротивление фаз аддитивно. [c.83]

    Заключительным этапом стратегии системного анализа процессов массовой кристаллизации является идентификация неизвестных параметров математических моделей массовой кристаллизации коэффициентов массоотдачи, теплопередачи, кинетических коэффициентов собственно фазовых переходов (кристаллизации, растворения), коэффициентов при силах сопротивления и т. д. [c.247]

    Рассмотрим массообмен между частицей и сплошной средой, когда сопротивление переносу сосредоточено в самой частице. В этом случае изменением концентрации во внешнем потоке можно пренебречь. Такие задачи будем называть внутренними. Так, если к внешним задачам относили определение коэффициентов массоотдачи, то к внутренним — нахождение кинетических коэффициентов роста и зародышеобразования кристаллов. Вид кинетических коэффициентов определяется из теорий роста, экспериментальных данных. Все существующие теории роста кристаллов можно разделить на три категории [33] 1) теории, описывающие рост кристаллов с чисто термодинамической точки зрения, имеющие дело с идеальными кристаллами (без дефектов решетки) 2) дислокационные теории, учитывающие, что источником ступеней при росте плоскостей кристалла являются дислокации 3) теории, описывающие рост кристалла, как кристаллохимические реакции на поверхности. [c.262]

    Обратим внимание на следующий факт в формуле (2.1.159) коэффициент р изменяется в широких пределах, причем Р - оо при 7 >0. Это позволяет в любом адсорбционном процессе выделить область внешнего и внутреннего массопереноса, согласно чему и меняется вклад каждого слагаемого правой части равенства (2.1.159). В области малых относительных концентраций в потоке скорость адсорбции лимитируется сопротивлением внешней массоотдачи, а распределение вещества по радиусу близко к равномерному. Коэффициент внутренней массопередачи Р очень велик, и основной вклад в сумму (2.1.159) дает первое слагаемое, в котором (согласно приведенным соображениям) можно положить уз = у = и точность этого равенства повышается с ростом выпуклости изотермы при достаточно малых В1. [c.71]

    Системы жидкость—жидкость сложнее описанных выше систем твердые частицы—жидкость, так как в системе жидкость—жидкость надо учитывать сопротивление массоотдачи в каждой из жидких фаз, что существенно затрудняет получение расчетных зависимостей на основании эксперимента. [c.35]

    Решение. Можно принять, что диффузионное сопротивление жидкости ничтожно мало по сравнению с сопротивлением газа, т. е. общий коэффициент массопередачи к приближенно равен коэффициенту массоотдачи йг для газа. Для этого случая воспользуемся обобщенным уравнением для пленочного режима работы абсорбера [в соответствии с уравнением (VII. 28)]  [c.176]


    Из самого определения следует, что коэффициент массоотдачи представляет собой величину, которая учитывает сопротивление переносу вещества за счет молекулярной диффузии, а также сопротивление переносу потоками жидкости, т. е. чисто конвективному переносу. Следовательно, на величину коэффициентов массоотдачи оказывают влияние все те факторы, которые определяют скорость [c.272]

    Случай первый — диффузионное сопротивление внутри капли незначительно по сравнению с диффузионным сопротивлением в сплошной фазе. В этом случае массообмен определяется только диффузионным сопротивлением в сплошной фазе. Коэффициент массопередачи может быть принят равным коэффициенту массоотдачи, а количество перенесенного из фазы в фазу распределяемого вещества [c.361]

    Адсорбция относится к процессам массообмена, протекающим с участием твердой фазы, и описывается уравнением (16-39). Однако многочисленные опыты показывают, что внутренним диффузионным сопротивлением самого адсорбента можно пренебречь и проводить расчет процесса по уравнению (16-28). Значения коэффициента массоотдачи Р можно определять по следующим уравнениям  [c.715]

    Уравнения (1.23) и (1.24) позволяют определить величины коэффициентов массопередачи Ку и располагая коэффициентами массоотдачи Pj, и р,. При этом коэффициенты Р,, и р , можно определять экспериментально для опытных систем, моделирующих сопротивление массопереносу преимущественно только в одной фазе. [c.34]

    Если сопротивление массопереносу сосредоточено в одной из фаз (один коэффициент массоотдачи значительно меньше другого), то величина коэффициента массопередачи процесса может быть приравнена к меньшему коэффициенту массоотдачи. [c.34]

    Определив коэффициенты массоотдачи для каждой из фаз, находят коэффициент массопередачи по уравнению аддитивности фазовых сопротивлений массопереносу. [c.47]

    Ранее отмечалось, что РПР целесообразно применять в тех случаях, когда сопротивление массопереносу сосредоточено в жидкой фазе. Образование жидкостных валиков, в поперечном сечении которых имеет место циркуляционное течение жидкости, существенно интенсифицирует процесс массообмена в жидкой фазе. Это связано прежде всего с частым обновлением межфазной поверхности. Поэтому для оценки коэффициента массоотдачи в жидкой фазе можно использовать пенетрационную модель. [c.205]

    Перемешивание газового потока жестким ротором, если лопасти не погружены в жидкостную пленку, может быть применено в случаях, когда сопротивление массопереносу сосредоточено в газовой фазе. Коэффициент массоотдачи в этом случае можно вычислить [47 ] по уравнению [c.206]

    Решение. Для решения задачи необходимо сначала определить коэффициент массоотдачи в газовой фазе. Так как сопротивление со стороны жидкой фазы при испарении жидкости отсутствует, то найденный коэффициент и будет представлять собой коэффициент массопередачи. Скорость увлажнения воздуха определим умножением вычисленного коэффициента массопередачи на разность концентраций водяного пара у поверхности жидкости и в ядре потока газа (при входе в колонну) и на поверхность контакта фаз, соответствующую 1 м высоты колонны. [c.288]

    При абсорбции хорошо растворимых газов, в частностя при поглощении хлористого водорода водой, основное сопротивление массопередаче сосредоточено не в жидкой, а в газовой фазе. Поэтому величина коэффициента массопередачи близка к значению коэффициента массоотдачи в газовой фазе и мало зависит от величины коэффициента массоотдачи в жидкой фазе, определению которого посвящен данный пример. (Прим. ред.) [c.290]

    Скорость переноса вещества от ядра потока к границе раздела фаз или в обратном направлении, т. е. массоотдача, так-ким образом, зависит как от молекулярной, так и от конвективной диффузии, однако основное сопротивление переносу вещества оказывает пограничный слой, так как скорость молекулярной диффузии значительно меньше конвекционной. [c.300]

    При рассмотрении процесса химической абсорбции в режиме мгновенной реакции не всегда можно пренебрегать сопротивлением массопереносу в газовой фазе, так как на кЬэффициент массоотдачи в жидкой фазе оказывает сильное влияние химическая реакция. [c.101]

    Другая теория, весьма близкая к взглядам Нернста, была предложена-Лэнгмюром [2]. Для поверхности раздела твердое тело — жидкость Лэнгмюр также постулировал неподвижность пленки, в которой сосредоточено основное сопротивление массопередаче. Для систем жидкость — газ он предполагал лищь отсутствие относительного движения жидкостной и газоЬой пленок, допуская при.этом возможность строго ламинарного движения (с однородным профилем скоростей) в направлении, параллельном поверхности раздела. Это предположение не изменило основных выводов пленочной теории. Х отя гипотеза о неподвижных пленках и вытекающий из нее вывод о линейной зависимости между коэффициентами массоотдачи и молекулярной диффузии оказались неверными, пленочная теория сыграла пoлoжиteльнyю роль в развитии представлений о мас-сообмене. Предположение об особом значении процессов, происходящих в тонком слое вблизи поверхности раздела фаз, допущение о наличии термодинамического равновесия на границе раздела фаз, а также вывод этой теории об аддитивности диффузионных сопротивлений — в большинстве случаев сохраняют свое значение и в настоящее время. [c.169]

    Понимая, что теория проницания в своем первоначальном виде непригодна для описания массообмена при турбулентном движении фаз, Коларж [29, 30] предпринял попытку связать время контакта т с характеристическими параметрами турбулентности в потоке, обтекающем твердую поверхность. Основной постулат теории Коларжа состоит в допущении, что перенос массы и тепла с твердой поверхности в объем лимитируется сопротивлением турбулентных пульсаций масштаба Яо, равного внутреннему масштабу турбулентности (т. е. такому критическому размеру турбулентных пульсаций, при котором начинают сказываться вязкие силы). Если предположить, что турбулентные вихри масштаба вплотную подходят к стенке и что перенос внутри таких вихрей осуществляться посредством нестационарной молекулярной диффузии, то для коэффициента массоотдачи получится выражение  [c.175]

    IV. Непосредственное определение пристенного коэффициента массоотдачи Рст в условиях, когда перенос вещества по радиусу слоя не оказывает существенного влияния на процесс [27, первая ссылка]. На внутреннюю поверхность трубок диаметром 10—16 мм и длиной 50—150 мм наносили тонкий слой р-нафтола на длине (4—13) Dan- Концентрацию -нафтола в воде определяли на выходе спектрофотометрически. Растворимость р-нафтола в. воде невелика и поэтому сколько-нибудь заметного изменения поверхности трубки во время опыта не происходит, а концентрация р-нафтола на выходе далека от равновесной. Из-за высокого значения критерия Шмидта S ( 1100) сопротивление переносу вещества сосредоточено у стенки трубки. Даже при Кеэ = 10 это сопротивление составляло 97% от общего. [c.130]

    Скорость переноса вещества н фазе обратно пропорциональна сопротивлению сред1.(, которое складывается из сопротивлений, оказываемых основной массой среды, буферным и пограничным слоями. Часто оказывается удобным условно рассматривать все явление массоотдачи как происходящее за счет только молекулярной диффузии в области постоянного градиента концептрации или, в случае газов, постоянного градиента парциального давления. В этом случае вводится фиктивная толщина ламинарного слоя бе, в котором сонротивление диффузии принимается равным сумме сопротивлений реального ламинарного слоя, буферного слоя и турбулентной зоны.  [c.71]

    Каждый член в правой части уравнений (11.42) и (П.4.Я) представляет сопротипления массоотдаче внутри соответствующей фазы. тoяп aя же в левой части величина, обратная коэффициенту массопередачи, япляется общим сопротивлением переносу из одной среды в другую, складывающимся из отдельных сопротивлений диффузии 1 нутри каждой из фаз. [c.76]

    Если диффундирующее вещество слабо растворимо в жидкой среде, то параметр т должен быть велик, ибо при равновесии весьма малая концентрация в жидкой фазе должна соответствовать большой концентрации в газе. Член 11т к в (11.43) становится пренебрежимо малым, и общий коэффициент массопередачи Кх практически совпадает с коэффициентом массоотдачи ж-В этом случае главное сонротивление диффузии оказывается ншдкостью и поэтому говорят, что ход массопередачи контролируется пограничным слоем на жидкостной стороне межфазовой поверхности. Если же диффундирующее вещество хорошо растворимо в жидкой среде, то параметр т должен быть мал, ибо нри равновесии уже небольпшя концентрация а в газовой фазе соответствует весьма больпкш концентрации его в жидкости. Член т кт в (11.42) становится пренебрежимо малым, и общий коэффициент массопередачи Ку практически совпадает с коэффициентом массоотдачи k . В этом случае главное сопротивление диффузии оказывается уже газом и поэтому говорят, что ход массопередачи контролируется пограничным слоем на газовой стороне межфазовой поверхности. [c.76]

    Если величины, обратные константам скорости, принять в качестве сопротивлений превращению на соответствующих этапах, то уравнение (VIII-172) показывает, что сопротивление превращению равно сумме кинетического l/k и диффузионного II(Diz) сопротивлений. Когда значение константы скорости химической реакции k значительно превыщает значение коэффициента массоотдачи Diz k D z), зависимость (VIII-172) упрощается  [c.248]

    Таким образом, в этом случае сопротивление диффузии определяет скорость превращения, и процесс проходит в диффузионной области. Когда же коэффициент массоотдачи О/г велик по сравнению с константой скорости химической реакции к D z к), уравнение (VIII-172) приобретает вид  [c.248]

    Величины, обратные коэффициентам массоотдачи и теплоотдачи, назьгаают сопротивлениями. Формулы (4.6) и (4.7) выражают аддитивность фазовых сопротивлений. Предельные случаи лимитирующего сопротивления одной из фаз легко могут быть установлены из соотношений (4.6) и (4.7) по величине коэффициента распределения и значениям частных коэффициентов массоотдачи. Например, для больших значений ф при условии 1/ki > 1/(фк2) общий коэффициент массопре-дачи в первой фазе равен соответствующему частному коэффициенту, т. е. х-о, =х-,. [c.170]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Приведенный расчет выполн1 н без учета влияния на основные размеры ректиф кационной колонны ряда явлений (таких как неравномерность распределения жидкости при орошении, обратное перемешивание, тепловые эффекты и др.), что иногда может внести в расчет существенные ошибки. Оценить влияние каждого из них можно, пользуясь рекомендациями, приведенными в литературе [8, П, 121 и в гл. 1П. Однако последовательность расчета рекомендуется сохранить и для колони с насадками других типов. Расчетные зави имости для определения предельных нагрузок по фазам, коэффициентов массоотдачи и гидравличе кого сопротивления насадок достаточно полно представлены в литературе 11, 11], в главе VI. [c.131]

    В уравнениях (4-22) и (4-23) правая часть коррелирует сопротивление массоотдаче для каждой жидкости отдельно. Если одно из сопротивлений весьма мало (например, вследствие сильной турбулентности или химической реакции), тогда соответствующее выражение отпадает и получается простая зависимость, по которой легко [c.306]

    Существующие теории массопередачи ставят своей целью дать выражения для коэффициентов массопередачи или представить их как функции частных коэффициентов массоотдачи по каждой из фаз. Сюда относятся двухпленочная теория Льюиса и Уитмена, в соответствии с которой предполагается, что на границе раздела фаз со стороны, каждой фазы образуются ламинарные пленки, в пределах которых сосредоточено основное сопротивление массопе-ренЬсу, а коэффициент массоотдачи пропорционален коэффициенту диффузии в первой степени. [c.343]

    Здесь, как и прежде, параметром Г-элемента служит эффектив ный коэффициент массоотдачи к. Особенностью диаграммного отображения условий равновесия является включение Г-элемента, который одновременно используется для обозначения дополнительного сопротивления массоотдаче, выражающегося в уменьшении движущей силы процесса на величину Сп оМ. Таким образом, в символах диаграмм отображается условие равновесия с учетом явления гидратации в системе. Этот Т-элемент можно интерпретировать как обратную связь, характеризующую воздействие химического превращения сополимера на проводимость сплошной среды. Вероятностной жесткостью обратной связи является число гидратации ге, которое, согласно (371, может изменяться от 4 до 9. [c.349]

    Процесс массообмена в системе газ—жидкость — процесс абсорбции — редко осуществляется в нормализованных реакторах с мешалками, причем только в случае труднорастворимых газов, и поэтому обычно можно пренебречь сопротивлением массоотдаче в газовой фазе. Критериальное уравнение для расчета объемного коэффициента массоотдачи в жидкой фазе Kv можно рассчитать по уравнению [c.36]

    При достижении критического значения влагосодержания функция скорости исиарения качественно изменяется. Капиллярных сил уже недостаточно для передачи жидкости к поверхности. Слой сухого материала образует дополнительно сопротивление тепло- н массоотдаче, которое снижают скорость сушки в режиме II. [c.141]

    Случай второй — диффузионным сопротивлением внутри капли пренебречь нельзя, в то время как диффудионное сопротивление сплошной фазы незначительно. В этом случае массообмен определяется диффузионным сопротивлением внутри капли. Коэффициент массопередачи может быть принят равным коэффициенту массоотдачи К у = Рд, а количество вещества, перенесенного из фазы в фазу, составит [c.361]

    Перечислим факторы, ускоряющие процесс сушки. С повышением температуры сушки давление водяных паров в материале увеличивается, а вместе с этим возрастает и движущая сила процесса. С уменьшением давлеиия в объеме, куда 1[омещен высушиваемый материал, снижается и парциальное давление водяного пара в пространстве над материалом, что также увеличивает движущую силу процесса с ростом скорости газового потока над высушиваемым материалом увеличивается коэффициент массоотдачи и, следовательно, увеличивается скорость процесса. При измельчении и перемешивании высушиваемого материала обновляется поверхность фазового контакта, что приводит к уменьшению диффузионных сопротивлений внутри высушиваемого материала и увеличению скорости процесса. Таким образом повышению скорости сушки способствуют  [c.436]

    Рассчитываем коэффициент массопередачи. Полагая, что диффузиомное сопротивление жидкости мало по сравнению с сопротивлением газа, принимаем, что коэффициент массопередачи К равен коэффициенту массоотдачи Рг газовой фазы. [c.352]


Смотреть страницы где упоминается термин Массоотдача сопротивление: [c.67]    [c.264]   
Дистилляция (1971) -- [ c.141 , c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Массоотдача



© 2025 chem21.info Реклама на сайте