Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучения тирозина

    В 1968 г. появилось сообщение о том, что под действием излучения торможения радиоактивного стронция О-тирозин разрушается быстрее, чем -тирозин. Однако подтверждений этого не последовало. [c.404]

    Уменьшение количеств отдельных аминокислот в облученном коллагене изменяется в зависимости от условий облучения, однако, обобщая все имеющиеся данные, можно сделать вывод, что наибольшему разрушению подвергаются фенилаланин, тирозин и гистидин лейцин, изолейцин, валин, серин и треонин почти совершенно не разрушаются под действием излучения. Эти результаты, полученные при облучении коллагена, отличаются от эффектов, наблюдаемых при облучении кератинов и других белков, богатых цистином. В фенилаланиновых, тирозиновых и гистидиновых остатках могут образовываться положительно заряженные центры или участки, обладающие недостатком электронов, которые могут создаваться при непосредственном взаимодействии с частицами высоких энергий или в результате реакций с электрофильными частицами, образующимися в среде под действием излучения. Как указывалось ранее, пептидный карбонил может внутримолекулярно взаимодействовать с этими положительно заряженными центрами, расположенными в боковых цепях, образуя неустойчивые циклические промежуточные продукты, которые затем распадаются, образуя продукты деструкции. Этим предположением может быть объяснено разрушение под действием излучения аминокислотных остатков фенилаланина, тирозина и гистидина. Но лейцин, изолейцин и валин имеют такое строение, которое пространственно затрудняет атаку образованных ими пептидных связей, и этим, в частности, может быть объяснена их устойчивость к действию реакционноспособных осколков, образующихся в среде под действием излучения. [c.436]


    Спектр излучения переноса (разведение в 10 раз) тирозина в гликоколе [c.40]

    Параллельно делались идентичные растворы тирозина в воде. Поглощение тех и других растворов фотографировалось в толстом слое (15 см). Стабилизированный источник излучения обладал непрерывным эмиссионным спектром. Измерение поглощения производилось фотометрическим путем, при этом из величины, характеризующей поглощение тирозина в гликоколе, вычиталась величина поглощения гликокола (снималась в том же опыте, на той же пластинке) и из поглощения тирозина в воде вычиталось поглощение воды. Экспозиции производились через 30—40 мин после присоединения тирозина к гликоколу и соответственно к воде. Кривые характеризующие результаты и являющиеся средними из большого числа опытов, показывают, что поглощение тирозина в характерной для него области (2700— 2800 А) проявляется яснее всего в 2% растворе гликокола. При этом увеличение поглощения по сравнению с поглощением тирозина в воде или в наиболее слабом растворе гликокола достигало 50—80% (рис. 9). [c.42]

    В полипептидной цепи эта группа, как предполагалось в модели Лаки и Коулсона, отцает четыре электрона для образования общей я-орбитали. Согласно этой модели белок является полупроводником, причем л-электронные орбитали располагаются перпендикулярно оси полипептидной цепи. Позже Эванс и Герей, рассматривая пептидную группу как элементарную ячейку, пришли к выводу о наличии в молекуле белка трех энергетических зон, из которых одна свободна. Более точные расчеты показали, что ширина запрещенной зоны в белках довольно велика и равна 5 эВ. Бриллюэн предложил модель, в которой зоны проводимости белка получаются за счет перекрытия ст-связей. В этой модели ширина запрещенных зон еще больше (8—10 эВ). Проблема полупроводи-мости белковых систем пока ждет решения. Эксперимент показывает, что энергия фотовозбуждения отдельных групп, связанных с белковой цепью, может мигрировать на значительные расстояния и вызывать флуоресценцию других групп. Комплекс миоглобина с оксидом углерода (II) отщепляет СО при действии излучения, которое не поглощается гемином (т. е. группой, непосредственно связанной с СО), но поглощается триптофаном и тирозином — аминокислотами, остатки которых входят в состав белка миоглобина. Здесь энергия мигрирует от белка к геминовой группе. Эти важные свойства белков показывают, что белки в некоторых случаях способны передавать энергию возбуждения, т. е., в общем случае, сигналы . В ходе эволюции функции передачи сигналов в форме серии дискретных импульсов, частота которых зависит от силы раздражения, перешли к более совершенной системе — нейронам нервной сети. [c.348]


    Использование флуорометрических методов ограничивается тем, что далеко не все поглощающие ультрафиолетовое излучение вещества являются достаточно эффективными флуорофорами. Тем не менее среди них находятся такие аминокислоты, как триптофан и тирозин, в результате чего флуоресцируют все содержащие их белки. При облучении светом длиной волны 280 нм, т.е. в максимуме поглощения остатков триптофана, наблюдается флуоресценция с максимумом испускания при 348 нм. [c.252]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    Помимо вышеуказанных реагентов, следует упомянуть диизо-пропилфторфосфат [56], также модифицирующий тирозин. Разрушение тирозина, а также триптофана и гистидина идет под действием УФ-излучения. Для распознавания состояния остатков тирозина и триптофана используются также небольшие спектральные смещения (см. разд. 9.6.1). Данные по модификации остатков тирозина в белках приведены в табл. 1. [c.355]

    Ультрафиолетовые спектры поглощения белков в области между 2500 и 3000 А еще более просты . Поглощение в этой области почти полностью обусловлено индольными боковыми цепями триптофана и фенольными боковыми группами тирозина. Фенильные боковые группы фенилаланина тоже поглощают излучение в этой области, но их молярное поглощение намного меньше. Спектры белков гораздо ближе к спектрам, полученным при суммировании спектров боковых цепей, входящих в состав белка, чем в случае нуклеиновых кислот. Спектр белка обычно слегка смещен (приблизительно на 30 А) в сторону больших длин волн, но отдельные различия так малы, что поглощение в области соответствующих длин волн может быть использовано при анализе числа боковых цепей триптофана и тирозина . Относительно малая разница между спектрами белков и спектрами входящих в них боковых цепей, вероятно, означает, что боковые цепи неупорядочены. Это согласуется с выводами, сделанными ранее на основании рентгенографических данных. Небольшие различия в спектрах, которые нередко наблюдаются, могут просто отражать различие в окружении [c.112]

    Stenstrom W., Radiol., 13, 437—440 (1929), Действие рентгеновского излучения на некоторые химические соединения (а) тирозин и цистин, (б) холестерин, (в) ацетилен и пропан. [c.389]

    Белки денатурируют при облучении ультрафиолетовым светом, а также большими дозами рентгеновых и у-лучей. Действие ультрафиолетового света особенно выражено при длинах волн от 260 до 310 ммк, причем основное поглощение обусловлено кольцами тирозина и триптофана. Показано, что при длительном воздействии ультрафиолетовых лучей происходит разрыв пептидных связей, смежных с ароматическими кольцами. При действии ионизирующего излучения могут также возникать разрывы между а-углеродными атомами и боковыми цепями аминокислот. Кроме того, возможны вторичные процессы, вызванные образованием различных свободных радикалов типа ОгН, Н2О2, ОН и т.д. Последние являются сильными окислителями, воздействующими на тиоловые группы и разрывающими дисульфидные связи. [c.187]

    Поглощение ультрафиолетового излучения. Большинство белков поглощает ультрафиолетовое излучение с длиной волны около 280 тр. Было показано1 [91—94], что это поглощение обусловлено тирозином, триптофаном и (в меньшей степени) фенилаланином. Таким образом, величина поглощения зависит от содержания этих аминокислот в белке. Измерение оптической плотности белкового раствора при 280 пу служит удобным и точным методом определения концентрации белка [95], если известен коэффициент экстинкции и в растворе нет других веществ, поглощающих свет с этой длиной волны. Рассматриваемый метод можно также применять для приближенного измерения общего содержания белков в смеси в тех случаях, когда допустимо использование среднего коэффициента экстинкции. Метод имеет то преимущество, что на поглощение света не влияют растворенные соли и многие другие вещества и что, следовательно, определение можно производить на образцах белковых фракций без всякой специальной их подготовки, Анализ производится быстро, причем требуются всего лишь доли миллиграмма белка. [c.20]

    Эти авторы показали также, что в большинстве белков происходит по крайней мере два разных экспоненциально затухающих из-лучательных процесса, причем форма полос излучения зависит от pH. Послесвечение триптофана (время жизни 3 сек.) не зависит от pH, но для тирозина в кислой среде оно равно 3 сек., а в щелочной падает приблизительно до 0,9 сек. Таким образом, сложное строение спектра белков может обусловливаться наложением спектров этих аминокислот, на которые, вероятно, еще налагается спектр фенилаланина, обладающего гораздо более слабым послесвечением со временем жизни менее 0,1 сек. [c.133]


    СКЛОННЫ считать результаты этих опытов не заслуживающими внимания. Но надо помнить, что на заре развития жизни даже незначительные отклонения могли давать реальное преимущество в борьбе за существование и что наблюдаемое нами теперь совершенство достигнуто за 3 млрд. лет в результате взаимодействия процессов мутирования и естественного отбора. Что касается избирательного синтеза, то было показано, что из перенасыщенных рацемических растворов могут спонтанно выпадать Ь- или О-энан-тиоморфы [18]. Что же касается избирательного распада, то Э. Коттон еще в 1896 году обнаружил, что оптические изомеры имеют различные коэффициенты поглощения для лево- и правополяризованного по кругу света (упомянутый уже эффект Коттона) и что по крайней мере в теории рацемическая смесь диссимметрических молекул при облучении таким светом должна преимущественно терять один из сортов молекул, приобретая оптическую активность. Однако экспериментальное подтверждение этого было получено только в 1929 году [58] — вот как велики методические трудности в этой области Другой возможный путь появления оптической активности исследовал Гараи [13], который в 1961 году начал изучение возможного действия р-излучения в комплексе с левополяризованным по кругу тормозным у-излучением, возникающим при торможении р-частиц (электронов). Лишь через семь лет Гараи получил положительные результаты он обнаружил, что в этих условиях В-тирозин разрушается быстрее Ь-тирозина. Конечно, дополнительные эксперименты в этой области не повредили бы . [c.289]

    Ряд исследователей считает, что мембранные эффекты УФ-облучения в основном индуцированы ПФОЛ и лишь частично обусловлены фотохимическими превращениями белков. Напомним, что происходящие в белках под воздействием УФ-излучения нарушения их структурно-функционального состояния индуцируются в основном поглощением энергии УФ-света остатками ароматических аминокислот триптофана, тирозина, фенилаланина, а также остатками серосодержащих аминокислот цистеина и цистина. Под влиянием УФ-света происходит фотоионизация остатков аминокислот с образованием сольватирован-ного электрона и катион-радикала аминокислоты  [c.129]

    Кислороднезависимых фотосенсибилизированных реакций известно сравнительно мало. В качестве примера можно привести фотолиз цистина в макромолекулах белков при действии УФ- излучения с длинами волн более 280 нм. Фотосенсибилизаторами в этом случае служат ароматические аминокислоты триптофан и тирозин. К кислороднезависимым фотосенсибилизирован-ным процессам относят и фотоприсоединение псораленов к пиримидиновым основаниям ДНК, [c.134]

    В случае тирозина, так же как и при аутокатализе ферментоидов, первые фазы процесса представляют собой активную реакцию между затравкой и субстратом, которая должна быть связана с возникновением излучения. При проведении экспериментов выяснилась следующая интересная закономерность внесение в гликокол циклических соединений (пиридин, пролин, триптофан, индол, ТИМИН, глицил-ангидрид, пиррол, тирозин, аденин) сопровождается вспышкой излучения, в то время как при внесении соединений с открытой цепью излучения не возникает (аргинин, креатин, глютамингидрохлорид, глицил-глицин). [c.41]

    Тирозин и триптофан (в незначительной степени также и фенилаланин) поглощают ультрафиолетовое излучение с максимумом поглощения при 280 нм. На этом основан спектрофотометрический метод измерения концентрации белков в растворах. Белки можно определять также колориметрически с помощью цветных реакций. В щелочной среде ионы двухвалентной меди образуют с пептидными группами комплексы, окрашенные в фиолетовый цвет (биуретовая реакция). Но чаще всего применяют более точный метод Лоури. Он основан на комбинации би-уретового реактива со специальным реактивом на ароматические аминокислоты. [c.53]

    Метод основан на способности ароматических аминокислот (тирозин и триптофан) поглощать УФ-излучение при 280 нм. Измеряя величину оптической плотности, судят о количестве присутствующего в растворе белка (Скоупс, 1985). Поглощение при 280 нм дает лишь приблизительное представление об истинном содержании белка. [c.49]


Смотреть страницы где упоминается термин Излучения тирозина: [c.658]    [c.65]    [c.188]    [c.226]    [c.389]    [c.389]    [c.495]    [c.189]    [c.190]    [c.167]    [c.231]    [c.189]    [c.190]    [c.185]    [c.83]   
Радиационная химия органических соединений (1963) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Тирозин

Тирозин тирозин



© 2025 chem21.info Реклама на сайте