Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий с иодом

    Олово, рубидий, вольфрам, литий, бор, иттрий, кобальт, свинец, бром, молибден, торий, цезий Скандий, мышьяк, кадмий, бериллий, аргон, гафний, уран, галлий, германий, иод [c.321]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]


    Между металлическими и окислительными элементами нет резкой границы. Утрата металлического характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются-такие, у которых металлические свойства крайне ослаблены, а окислительные свойства выявлены еще недостаточно. Для таких элементов промежуточного характера было бы целесообразно использовать название металлоиды. К этому классу элементов могут быть отнесены по два элемента из каждого периода, а именно бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур, висмут, полоний. У всех этих элементов мы встречаемся с проявлением если не металлических, то во всяком случае ясно выраженных восстановительных свойств. Следует отметить, что даже у настоящих окислительных элементов (сера, селен, бром, иод, астат) также проявляются восстановительные свойства. В этом отношении от них резко не отличаются следующие за ними инертные элементы — криптон, ксенон, радон. Однако инертные элементы характеризуются полным отсутствием окислительных свойств. [c.35]

    При кристаллизации веществ из растворов и расплавов часто выделяются не чистые твердые вещества, а так называемые твердые растворы. Например, такие растворы образуют иод в бензоле. При охлаждении приблизительно до 5°С выпадающие из раствора кристаллы бензола окрашены иодом. Причем количество иода, растворенного в бензоле, пропорционально концентрации иода в жидком растворе. Распределение иода между жидкой и твердой фазами подобно распределению его между двумя несмешивающи-мися растворителями. Непрерывный ряд твердых растворов дают медь и золото, титан и цирконий, германий и кремний и т. п. при кристаллизации их расплавов. Фазовые диаграммы этих систем (рис. 62) аналогичны диаграммам состояния для двух смешивающихся жидкостей (рис. 57). Применительно к процессам кристаллизации для них справедливы законы Коновалова., Жидкая фаза [c.219]

    Со всеми галогенами германий, олово и свинец взаимодействуют с образованием тетрагалидов. Однако в связи с неустойчивостью тетра-бромида и тетраиодида свинца при действии брома и иода на свинец получаются дибромид и дииодид. Реакции начинаются уже на холоду и идут энергично при сравнительно небольшом нагревании. [c.201]

    При данном количестве иода по мере понижения температуры равновесие смещается вправо Создавая между двумя температурными зонами кругооборот продуктов реакции, можно переносить кремний или германий из высокотемпературной зоны источника в зону осаждения. [c.141]


    В шаровидную часть ампулы загружают кусочки германия п-типа (0,5—0,7 г) и навеску иода не более 0,6 г (при этом давление пара иода в ходе опыта не будет превышать 1,5 атм ). Затем помещают предварительно взвешенную с точностью до 10" г подложку и продвигают ее к перетяжке у шаровидной части. Это необходимо для [c.146]

    В указанных температурных условиях и при данной объемной концентрации пара йода ( — 4,5 мг/см ) скорость эпитаксиального роста германия составляет примерно 8 мкм/ч. После выхода на режим процесс проводят в течение 3 ч. За это время толщина эпитаксиальной пленки достигает 20—25 мкм. По окончании процесса сначала выключают горячую зону, а затем, когда зона источника охладится до 150—200° С, выдвигают шаровидную часть ампулы из печи, чтобы весь иод сконденсировался в шарике. Выключают холодную зону после охлаждения извлекают ампулу из печи и вскрывают (под тягой). На полученном образце проводят дальнейшие исследования. [c.148]

    Реакция обратима, выше - 600° равновесие сдвинуто влево. Ее можно использовать как транспортную для получения германиевых пленок, но чаще используют перенос германия в токе иода и водорода. Б этом процессе основную роль играет тоже реакция (15) [41, 42]. [c.168]

    Сравнивая серу и ее гомологи с хлором, бромом и иодом, наблюдается по ходу сверху вниз в столбце в обоих группах повышение тенденции к полимеризации и образованию сложно построенных кристаллических структур это явление еще заметнее при переходе к V группе, т. е. к фосфору и его гомологам и далее оно видно очень ярко в IV группе для кремния, германия, олова и свинца. При движении сверху вниз в этих столбцах Системы возрастает металлический характер кристаллических модификаций. [c.205]

    Фосфор (Р ) Иод Бор Селен Германий Теллур Кремний Углерод фит) [c.247]

    Германий. Олово. Свинец, иод общ. ред. [c.410]

    Оксид бора 144 ванадия 729, 738 висмута 392—4, 403 вольфрама 781 галлия 178 гафния 721—2, 725 германия 240 дейтерия 6 европия 646—7 железа 755, 823—5 золота 576 индия 185 иода 521 иридия 895 иттербия 658 иттрия 612 кадмия 589 калия 45 кальция 110 кобальта 846—7 кремния 225—6 ксенона 543—4 лантана 619 лития 10 магния 100 [c.477]

    Для определения содержания германия в полученном веществе анализируемую навеску окисляют смесьЛ азотной и серной кислот, а затем прокаливают до двуокиси германия. Иод определяют, осаждая иодид серебра из водного раствора трииодида метилгермания. Данные анализа HaGeJs  [c.65]

    Химические соединения, такие как селенид кадмия и сульфид кадмия, арсенид индия и т.д., содержащие некоторые добавки (например, германий, иод), обычно в количестве порядка нескольких процентов, предназначенные для использования в электронике, независимо от того вьшолнены ли они в форме цилиндров, прутков и т.п. или разрезаны на диски, пластины или близкие к ним формы. [c.389]

    Г един Германий Гольмий Диспрозий Европий > (елез0. Золото. Ицдий. Иод. . Иридий Иттербий Иттрий. К мий. Калий. Калифорний Кальций.  [c.19]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Теплотой образования называется тепловой эффект реакции образования данного соединения из простых веществ, отвечающих, как правил о, н а и б о л ее устойчивому состоянию простого вещества при стандартных условиях (например, газообразный кислород, кристаллический иод, кристаллический германий, металлический кальций и др.). Такой выбор стандарти- зации предусматривает, что теплоты образования простых веществ при стандартных условиях (р=1,0Ы0 Па и Г=298,15 К) равны нулю. [c.30]

    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Подобно силанам, гидриды германия способны последовате,льно замещать свои водородные атомы на галоид при взаимодействии с галоидоводородами. Исключение представляет иодистый водород, реагирующий с моногерманом по схеме ОеН4 +2HI = = Geb + 3Hj. Взаимодействием СегНе с элементарным иодом при —63 °С был получен устойчивый лишь в твердом состоянии ОегНз (т. пл. —17 °С). [c.641]


    В частности, по ряду С—РЬ уменьшаются энергии связей Э—Э 83 (С—С), 53 (Si—Si), 45 (Ge—Ge ), 37 ккал/моль (Sn-Sn). С другой стороны, по тому же ряду увеличиваются координационные числа элементов. Например, у фтористых соединений максимальное координационное число углерода составляет четыре (в F4)i кремния и германия — шесть (в солях НаЭР ), олова и свинца — восемь (в соля Н4Эр8). По отношению к более объемистым галоидам максимальное координационное число кремния (и углерода) не превышает четырех, у Ge оно возрастает до шести только для хлора, а у Sn и РЬ — даже для иода. Как уменьшение устойчивости связей [c.642]

    Кристаллическая структура элементов В -подгруппы подчиняется правилу Юм-Розери, согласно которому координационное число фиксированного атома п = 8 — Ы, гд,е N — номер группы периодической системы, в которой находится данный элемент. Например, в кристаллическом иоде и броме (7-я группа) каждый атом имеет по одному ближайшему соседу, что соответствует молекулам Ь и Вгг. Эти молекулы связаны со своими соседями ван-дер-ваальсовыми силами, образуя молекулярные кристаллы. Селен и теллур (6-я группа) образуют кристаллическую структуру в виде спиральных цепочек с координационным числом 2. Атомы элементов пятой группы (Аз, 5Ь, В1) упаковываются в решетке с координационным числом 3 + 3. Углерод, кремний и германий (4-я группа) образуют типично ковалентные кристаллы с координационным числом 4. [c.168]

    Интересно отметить, что в рядах дигалогенидов германия и олова, с одной стороны, и в ряду дигалогенидов свинца, с другой, наблюдаются противоположные тенденции в изменении температур плавления с возрастанием атомного номера галогена. Если в первом случае температуры плавления при переходе от фторидов к иодидам в общем случае повышаются, во втором случае происходит их понижение. Этот факт объясняется тем, что для германия и олова в какой-то мере характерно гибридное sp o тoяииe (больше для германия). Поэтому координационная ненасыщениость, наблюдаемая у дигалогенидов, в меньшей степени проявляется для объемных атомов иода. В противоположность этому для дигалогенидов свинца наблюдается обычная закономерность понижения температуры плавления с уменьшением доли ионности связи в солеобразных координационных кристаллах РЬГ, при переходе от фторида к иодиду. Таким образом, в этом отношении олово также ближе к германию, чем к свинцу. [c.224]

    Материалы механически полированные с обеих сторон монокристаллические подложки германия р-типа диаметром 10—20 мм и толщиной 200—400 мкм германий /г-типа (источник) иод кристаллический (ХЧ) травитель Уайта (НМ0з НР Н20 = 10 1 6) этиловый спирт сухой лед для замораживания ампу-.1ы при откачке. [c.145]

    Выращивание эпитаксиального слоя. Схема установки и распределение температур представлены на рис. 88. В вакуумированной кварцевой ампуле / помещены в низкотемпературной зоне монокрис-таллическая германиевая подложка 4, в высокотемпературной — германий, служащий источником, и навеска иода 6. Печь 5 представляет собой кварцевую трубу (внутренний диаметр 30 мм) длиной 50 см, на которой размещены две обмотки, выполненные из нихрома диаметром [c.145]

    После загрузки компонентов на расстоянии 25 см от начала ампулы делают перетяжку и оливку (см. пунктир на рис. 89). Перед ваку-умированием ампулу замораживают в сосуде Дьюара с сухим льдом во избежание испарения иода при откачке. Возможна также загрузка иода в запаянном стеклянном капилляре (см. работу 8). Не вынимая ампулу из сосуда Дьюара, производят вакуумирование до остаточного давления Ю"" мм рт. ст., после чего ампулу отпаивают. Покачиванием ампулы осторожно перемещают подложку в свободный конец. Подготовленную ампулу помещают в печь таким образом, чтобы подложка находилась в низкотемпературной зоне, а исходный германий и иод — в высокотемпературной. [c.147]

    Сначала выводят на рабочий режим (400°С) зону, в которой находится подложка. Затем в течение 30 мин поднимают температуру зоны источника до 550°С. С этого момента ведут отсчет времени эпитаксиального наращивания. При 5о0°С германий реагирует с паром иода, образуя тетраиодид Gel4. Последний, взаимодействуя со свободным германием в этой же температурной зоне, образует субиодид Gela. Сущность процесса отражается уравнениями  [c.147]

    Адсорбция катионов на кремнии и германии из травнтелей и промывных вод достигает IQi —IQi ионов на 1 см," при концентрации их в растворе 10 —вес.%. Величина адсорбции их на кремнии зависит от pH и от концентрации HF в травильных смесях. Наблю ,алась значительная адсорбция ионов иода на германии из растворов KI, зависящая от pH и степени окисления поверхности. Методом меченых атомов исследовалась адсорбция ионов на порошке GaAs. Доказано, что ионы серебра, золота, меди, ртути адсорбируются прочно, а ионы натрия и цинка — обратимо и легко отмываются с поверхности. [c.175]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Тетрахлориды кремния, германия и олова — жидкие вещества, очень сильно гидролизующиеся, склонные к комплексообразованию, в частности к образованию кислот типаНаЭОе. Тетрафторид кремния S1F4 в обычных условиях газообразен. Тетрафторид иода Sil 4—твердое вещество. Н jSiF g — сильная кислота. Почти все соли ее бесцветны и растворимы в воде (труднее — соли калия и бария). [c.287]

    Соединения с иодом. Тетраиодид GeU можно получить синтезом из элементов и действием иодистоводородной кислоты (не менее 5 н.) на GeO . Образует тетраэдрические кристаллы. Устойчив в сухом воздухе. Легко сублимирует при нагревании. В присутствии влаги медленно гидролизуется. Термическое разложение тетраиодида с выделением германия идет лишь выше 1000° [39], но в присутствии следов влаги и кислорода уже при 440° он диссоциирует на иод и Gela- Концентрированная серная кислота при нагревании разлагает его с выделением иода. Концентрированная азотная кислота окисляет. [c.167]

    Все элементы в периодической системе подразделяют на а) металлы (наибольшее число) б) металлоиды (металлоподобные) — полупроводниковые элементы, а именно бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, иод (всего 12), расположенные между металлами и неметаллами по диагональному направлению в) неметаллы (15 элементов) металлоиды и неметаллы частично перекрывают друг друга г) инертные элементы — группа VIПА (6 элементов). Подразделение элементов на эти четыре типа имеет большое значение для аналитической химии. [c.13]

    Азот. . Алюминий Ар гои. . Барий. . Бериллий Бор. . Бром. . Ванадий. Висмут. Водород. Вольфрам Гадолиний Галлий. Гафни11. Гелий. . Германий Гольмий Диспрозий Евроний Железо Золото Индий Иод. . Иридий Иттербий Иттрий Кадми11 Калий. Кальций Кислород Кобальт. Кремний Криптон Ксенон. Лантан. Литий Лютеций Магний. Марганец Медь. . Молибден Мышьяк 11атрий.  [c.14]


Смотреть страницы где упоминается термин Германий с иодом: [c.350]    [c.125]    [c.143]    [c.641]    [c.44]    [c.572]    [c.254]    [c.216]    [c.306]    [c.338]    [c.104]    [c.582]    [c.243]    [c.479]   
Химия германия (1967) -- [ c.90 , c.381 ]




ПОИСК





Смотрите так же термины и статьи:

иодо



© 2025 chem21.info Реклама на сайте