Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильный реагент взаимодействие с карбкатионом

    Реакции замещения (по конечному результату) при взаимодействии лигнина с нуклеофильными реагентами проходят по механизму мономолекулярного нуклеофильного замещения в две стадии. Первая стадия представляет собой медленную ионизацию субстрата - лигнина с образованием карбкатиона, а вторая заключается в быстром присоединении нуклеофильного реагента к карбкатиону [c.434]


    Точно так же как и вода, с промежуточным карбкатионом могут реагировать и другие нуклеофильные реагенты, содержащиеся в реакционной смеси, например анион кислоты, применяемой в качестве катализатора [см. схему (129)], уже образовавшийся спирт и еще не замещенный олефин. Так, при взаимодействии олефинов с водной серной кислотой протекают следующие конкурирующие реакции  [c.238]

    Изомерное превращение возможно в том случае, если карбка-тион имеет несколько положительно заряженных реакционных центров, по каждому из которых может происходить взаимодействие с противоионом (мезомерные катионы, неклассические карбкатионы), или если он способен к перестройкам скелета, в частности к смещению к положительно заряженному атому атома водорода или заместителя от соседнего углеродного атома с образованием более стабильного карбкатиона, который и вступает в реакцию с противоионом. В некоторых случаях образуется равновесная смесь карбкатионов, и конечный продукт реакции зависит от реакционной способности каждого из них по отношению к действующему реагенту. Если ионная диссоциация проводится в растворителях, способных к взаимодействию с возникающим на атоме углерода положительным зарядом, то имеет место конкуренция на взаимодействие с ним между смещающейся группой (внутренний нуклеофил) й нуклеофильным атомом растворителя в результате при сольволизе может получиться смесь соединений. В данной главе будут рассмотрены только изомерные превращения, протекающие через стадию карбкатионов. [c.90]

    Природный лигнин древесины и выделенные лигнины в присутствии кислотного или щелочного катализатора вступают во взаимодействие с фенолами. Так, при нагревании древесины с избытком фенола в присутствии кислоты лигнин переходит в раствор с образованием феноллигнина. Реакция идет, как и при конденсации лигнина, по механизму ну1Слеофиль-ного замещения через промежуточный бензильный карбкатион. Фенол выступает в роли внешнего нуклеофильного реагента, присоединяющегося к карбкатиону (схема 12.43, а). Фенол в присутствии кислотного катализатора расщепляет связи а-О—4 в фенилкумарановых структурах (см. схему 12.43, б). В щелочной среде взаимодействие фенолов с лигнином происходит через промежуточный хинонметид. Подобные реакции происходят при получении лигнинфенолоформальдегидных смол с заменой на лигнин части фенола. Лигнин, как фенол, и полученный феноллигнин далее конденсируются с формальдегидом. Получаемые термореактивные смолы могут использоваться в качестве связующих (исходное сырье технический щелочной лигнин) и для получения пластмасс (исходное сырье гидролизный лигнин). Многоатомные фенолы, со структурой типа резорцина, имеющие не менее двух активных положений в бензольном кольце, могут в результате реакции конденсации с лигнином сшивать его фрагменты. Поэтому некоторые фенольные экстрактивные вещества затрудняют кислую сульфитную варку (см. 13.1.2). [c.456]


    Реакции конденсации. С реакциями сульфирования и деструкции, как уже отмечалось, конкурируют реакции конденсации. Конденсации способствуют кислая и щелочная среды и повышенная температура. По усилению реакций конденсации сульфитные методы варки можно расположить в следующий ряд нейтрально-сульфитная < щелочно-сульфитная < кислая сульфитная. В реакциях конденсации участвуют те же промежуточные активные частицы, которые взаимодействуют с нуклеофильными сульфирующими реагентами - бензильный карбкатион в кислой среде и хинонметид в нейтральной и щелочной средах. При щелочно-сульфитной и особенно при нейтрально-сульфитной варках реакции конденсации имеют меньшее значение, чем при кислой сульфитной варке. Чем ниже pH, тем интенсивнее могут протекать реакции конденсации. Структурные единицы лигнина, имеющие слабые нуклеофильные центры у С(6), С(з) и С( ), могут конкурировать с варочными нуклеофилами в реакциях нуклеофильного присоединения к карбкатиону и образовывать при этом новые углерод-углеродные связи с С (см. схему 12.32) в дифенилметановых структурах. [c.471]

    Гидроксил или алкоксигруппу невозможно отщепить в виде аниона НО или ROQ по S l- или S]sr2-MexaHH3My, поскольку нуклеофильность этих групп очень велика (см. разд. 4.9.2) вследствие этого обратная реакция присоединения на много порядков предпочтительнее. Поэтому спирты удается превратить в сложные эфиры неорганических кислот лишь в кислой среде, а простые эфиры также расщепляются лишь в кислой среде. В результате равновесного взаимодействия с кислотой Бренстеда или Льюиса предварительно образуется оксониевый ион, заряженная группа которого имеет повышенную тенденцию к отщеплению при соответствующих условиях она может в результате мономолекулярной реакции образовать карбкатион (путь Sn1/A1). Но во многих случаях сила оттягивания электронов недостаточна и реакция нуждается в содействии нуклеофильного реагента путь [c.202]

    Следует отметить, что возврат ионной пары или катиона в исходное состояние — соль диазония — невозможен, поскольку для этого необходимо участие газообразного азота. Но не только это определяет своеобразие поведения возникающих в качестве интермедиатов карбкатионов. Формально при дезаминировании RNH2 и при сольволизе R0S02Ar или RHal получаются одинаковые катионы R+, однако в действительности они заметно отличаются по поведению и реакционной способности. В основе такого различия прежде всего лежит тот факт, что катион, возникающий при распаде малостабильных диазокатионов обладает большим запасом энергии иногда его называют горячим катионом. Энергия активации реакции распада оценивается в 12—17 кДж/моль, в то время как при ранее рассмотренных сольволитических процессах энергия активации порядка 120 кДж/моль. Все это обусловливает высокую реакционную способность горячих катионов и их низкую селективность при взаимодействии с нуклеофильными реагентами или растворителем. Время жизни катиона может оказаться коротким по сравнению со временем реорганизации вокруг него молекул растворителя или даже со временем оборота вокруг углерод-углеродной связи. [c.193]

    Мономолекулярная реакция нуклеофильного замещения пред< ставляет собой двустадийный ионный процесс. Первая стадия — ионизация реагента и образование карбкатиона (карбониевого иона) (реакция 1), вторая стадия — взаимодействие карбкатиона с нуклеофильной частицей (реакция 2)  [c.143]

    Такая реакция идет в две стадии. Она начинается с диссоциации галогеналкила на ионы под влиянием молекул растворителя. Скорость этой диссоциации чрезвычайно мала и определяет скорость всей реакции замещения. Образующийся при диссоциации карбониевый ион, и.меющий плоское строение, в дальнейшем быстро взаимодействует с реагентом или молекулой растворитатя (что более вероятно), образуя конечный продукт замещения, состоящий из равных количеств стереоизомеров (рацемат) (см. гл. VI, 5). При таком механизме реакции скорость замещения зависит исключительно от концентрации исходного галогеналкила и не зависит от концентрации реагента у = —X]. Такой механизм реакции называется мономолекулярным нуклеофильным замещением и обозначается символом 5 1. Реакциям с таким механиз.мом благоприятствуют больщая полярность растворителя и устойчивость карбкатиона, которая зависит от участия заместителя (алкильных групп) в распределении положительного заряда за счет - -/-эффекта этих групп. Чем больше водородных атомов в. метильной группе за.мещено на радикалы [например, в случае трет-бутила (СНз)зС— , тем равномернее распределение этого заряда по всем углеродным атомам карбкатиона и тем более стабилен этот ион. [c.90]

    Конкуренция нуклеофилов при замещении. При проведении реакций нуклеофильного замещения в реакционных смесях обычно присутствуют несколько нуклеофилов, что обусловливает образование побочных веществ. Кроме того, некоторые нуклеофилы обладают двумя реакционными центрами и дают разные продукты замещения. При 5 2-реакции органическое вещество преимущественно реагирует, как мы видели выше, с реагентом, имеющим наибольшую нуклеофильность, зависящую от поляризуемости. В отличие от этого, при SJvl-замещении карбкатион ввиду его высокой реакционной способности имеет меньшую избирательность, но все же предпочтительно взаимодействует с нуклеофилом, имеющим наибольшую электронную плотность (или электроотрицательность). Это правило Корнблюма имеет важное значение для предсказания необходимых условий реакции. [c.41]



Смотреть страницы где упоминается термин Нуклеофильный реагент взаимодействие с карбкатионом: [c.278]    [c.95]   
Теоретические основы органической химии (1979) -- [ c.293 , c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильный реагент

Реагенты нуклеофильные Нуклеофильные реагенты



© 2025 chem21.info Реклама на сайте